Otsing sellest blogist

UUS!!!

Neogeen

Blogi, mis räägib kõigest, mis on Leonhardile oluline ja/või huvitav. Kommenteerige, tellige, lugege, nautige ja õppige. Neogeen  on  kronos...

neljapäev, 2. mai 2024

Nanolitograafia

Nanolitograafia on nanotehnoloogia haru, mis tegeleb nanoelektroonika komponentide valmistamisega, mida kasutatakse mikroprotsessoritesmäludes, rakendusotstarbelistes mikroskeemides (integrated circuit). Tänu litograafia tehnoloogiate arengule on pooljuhtide tööstust saatnud edu, mida kinnitab ka Moore'i seadus. Üldiselt on nanostruktuursete pindade valmistamiseks kaks lähenemisviisi: ülalt-alla- (top-down) ja alt-üles-meetod (bottom-up), kuid kasutatakse ka tehnoloogiaid, mis kombineerivad neid.

Ülalt-alla-meetodid

Ülalt-alla-meetodeid kasutatakse palju pooljuhtide uurimisel ja tööstuses.

Fotolitograafia tööpõhimõtte skeem

Fotolitograafia

Fotolitograafia ehk optiline litograafia on olnud valdavaks tehnikaks mikroskeemide litografeerimisel. Kasutatakse väga madalaid lainepikkusi (193 nm). Meetodi tööpõhimõte on järgmine:

Alus ehk substraat kaetakse kilega (1). Kile peale kantakse fotoresisti kiht, mis muutub UV-kiirguse mõjul lahustuvaks (positiivne fotoresist) või lahustumatuks (negatiivne fotoresist) spetsiaalses kemikaalis (2). Siis eksponeeritakse eelnevalt sadestatud kilet UV-valgusega läbi fotomaski, millel on kujutis vastavalt soovitud elemendile integraalskeemis (3). Seejärel eemaldatakse eksponeeritud resist (4) ning söövitatakse kile samast kohast (5). Näiteks SiO2 kile korral saab seda söövitada HF-ga. Viimase etapina eemaldatakse fotoresist (6), näiteks H2SO4 abil.

Elektronkiirlitograafia

Elektronide voog kiirendatakase substraadile ning seda liigutatakse elektri- ja magnetvälja abil vastavalt soovitud elemendi kujule. Elektronide doos ja kiire energia on täpselt kontrollitavad. Elektronkiirega saab "joonistada" elemente nii otse kui ka läbi maski.

Klassikaline DPN mehhanism: Molekulaar "tint" difundeerub teravikult pinnale läbi veemeniski

Skaneeriva kiire litograafia

Siia alla kuuluvad meetodid, mis kasutavad skeemi "joonistamiseks" teravikku, mida liigutatakse mehaaniliselt mööda pinda. Skaneeriva kiire litograafia võib jaotada kaheks: keemiline ja füüsikaline pinna modifitseerimine. Esimese meetodi puhul rakendatakse lokaalse oksüdatsiooni protsesse. Teise meetodi korral moodustub soovitud struktuur materjali füüsikalise liigutamisega substraadil.

Teraviknanolitograafia (Dip-pen nanolithography, DPN), mis on füüsikaline skaneeriva kiire litograafia meetod, kasutab AFM’i teravikku, et materjali pinnale kanda. See materjal võib olla kas teraviku enda koostisosa (näiteks Au), mida mõjutatakse jõu või vooluga, või füüsikaliselt adsorbeeritud materjal. Teravikult substraadile kantakse materjal kapillaarjõudude abil.

Muid ülalt-alla-meetodiga litograafia tehnoloogiaid

  • Sügava UV-kiirguse litograafia (Extreme ultraviolet lithography)
  • Röntgenlitograafia (X-ray lithography)
  • Magnetlitograafia (Magnetolithography)
  • Kontaktlitograafia (Contact lithography)
  • Pehme litograafia (Soft lithography)

Alt-üles-meetodid

Alt-üles-meetodid on arendanud (bio)keemikud ning need on seotud molekulaarse iseorganiseerumisega (molecular self-assembly). Iseorganiseerumise meetodid võib jaotada kaheks: 1) kahjumlik protsess (sacrificial process), kus iseorganiseeruvad nanokomponendid eemaldatakse ja nad ei osale aktiivselt nanostruktuuride moodustumisel, 2) aktiivne protsess, kus iseorganiseeruvad nanokomponendid on mikroskeemide osana. Mõlemal juhul põhjustavad organiseerumise mitmed intermolekulaarsed jõud (vesiniksideVan der Waalsi jõudhüdrofoobsed/hüdrofiilsed ja π-π vastastikmõjud), mille eesmärgiks on minimeerida termilist ja kineetilist energiat, mille tulemusena moodustub muster.

Näiteks kasutatakse nanostruktuuride organiseerumiseks nukleiinhappeid, kuna neil on etteennustatav iseorganiseerumise mudel, nende dimensioonid on hästi teada ja neid saab funktsionaliseerida. DNA origami tehnoloogia seisneb pika (100 nm) ühekiulise DNA voltimisel juhuslikuks tasapinnaliseks nanovormiks.

Kombineeritud meetodid

Kombineeritud meetod kasutab nii ülalt-alla- kui ka alt-üles-meetodeid. Chung et al. on kombineerinud DPN-i ja DNA-suunatud iseorganiseerumist, kus nanoskaalas elektroodiliited on selektiivselt funktsionaliseeritud spetsiifilise oligonukleotiidi järjestusega kasutades DPN-i. Need järjestused suunavad elektriskeemi iseorganiseerumist, mis sisaldavad 20 nm ja 30 nm diameetriga DNA-ga modifitseerituid nanoosakesi. Selle tulemusena moodustuvad liited, mis on ühendatud üksiku nanoosakesega.

Kommentaare ei ole: