Otsing sellest blogist
UUS!!!
Malaaria
Malaaria ehk halltõbi on transmissiivsete haiguste rühm, mida põhjustavad punalibledesse elama asunud eukarüootsed algloomad per...
reede, 13. veebruar 2026
Kromoplast
neljapäev, 12. veebruar 2026
Rakuhingamine
Rakuhingamine on kõikide aeroobses keskkonnas elavate organismide rakus toimuvate metaboolsete protsesside ja hingamisprotsesside kompleks. See on astmeline toitainete molekulide (näiteks glükoos või rasvhapped) lagunemine, mis lõpuks vabastab energiat adenosiintrifosfaadi (ATP) näol.
Kõige tavalisemalt kasutatav energiaallikas on glükoos. Ensüümid lõhuvad iga glükoosimolekuli mitme etapi vältel. Iga kovalentse sideme lõhkumisega vabaneb väike kogus energiat. Kui olemasoleva glükoosi hulk on liiga väike, on võimalik energiaallikana kasutada rasv- või aminohappeid.
Aeroobse hingamise summaarne valem on: C6H12O6 + 6 O2 → 6 CO2 + 6 H2O.
Aeroobne hingamine
Glükolüüs
Glükolüüs on esimene etapp mitmete reaktsioonide hulgast, mis kokku moodustavad hingamise. Otsetõlkes on glükolüüs "glükoosi lõhkumine". Glükolüüs toimub raku tsütoplasmas. See on anaeroobiline (see tähendab, et protsess toimub ilma hapnikuta) ja selle tulem on pürovaat ja väike hulk ATPd. Üks molekul heksoosisuhkur glükoosi muutub kaheks molekuliks kolm-süsiniku molekuliks, mida nimetatakse pürovaadiks. Selle protsessi puhaskasu on kaks ATP molekuli ja kaks NADH + H molekuli. Glükolüüsi etapid on fosforüülimine, lüüsis, oksüdeerimine ja ATP moodustumine.
Neli ATP molekuli moodustub ühe glükoosimolekuli muutmisest kaheks pürovaadi molekuliks, kuid kaks molekuli ATPd on vajalikud, et alustada glükolüüsi jääb puhaskasumiks vaid kaks ATP molekuli. Lisaks ATP molekulidele ja pürovaadi molekulile, moodustub kaks NADH + H molekuli.
Fosforüülimine
Fosforüülimise protsessis lisatakse kaks fosfaadi gruppi ATPst. Selle tulem on heksoosi bifosfaat (see esineb vastupidi hingamise eesmärgile (ATP tegemine), kuid selleks kuluvad 2 ATPd taastatakse hiljem).
Lüüsis
Selle reaktsiooni käigus heksoosi bifosfaat lõheneb kaheks trifosfaadiks.
Oksüdeerimine
Esmalt leiab aset veel üks fosforüülimine, kuid sel korral kasutatakse ATP asemel anorgaanilist fosfaatiooni. Moodustub kaks 3-bifosfaati. Energia, mis fosfaatioonile lisatakse tuleb oksüdeerimise reaktsioonist. 3-bifosfaat oksüdeerub ja samaaegselt NAD redutseerub NADH+H.
ATP moodustumine
Oksüdeerimisele järgneb rida reaktsioone, mille käigus kaks fosfaadigruppi igast 3-bifosfaadist kantakse üle kahele ADP molekulile, et moodustada kaks molekuli ATPd. Samuti toodetakse pürovaadi molekul.
Sidereaktsioon ja Krebsi tsükkel
Kui hapnik on olemas, liigub glükolüüsil moodustunud pürovaat mitokondri maatriksisse lihtsustatud difusiooni abil, kus sidereaktsioon ja Krebsi tsükkel aset leiavad.
- Sidereaktsioon kasutab koensüümi A-d, et muuta pürovaat atsetüül-CoA-ks. Süsiniku aatom eraldub süsinikdioksiidina. Sellega samaaegselt oksüdeerub pürovaat vesiniku eraldumisega. NAD eemaldab vesiniku aatomid, et moodustada NADH+H.
- Atsetüül siseneb Krebsi tsüklisse, et jätkata aeroobilise hingamise protsessi. Otsekoheselt eraldatakse koensüüm A ümbertöötlemiseks.
- Kaks süsinikku, mis atsetüül-CoAga sisenesid, lahkuvad süsinikdioksiidina.
- Moodustub üks ATP molekul.
- Vesinik eemaldub oksüdeerimise reaktsioonide ajal kahte hapnikukandjasse – NAD-i ja FAD-i.
- Krebsi tsükkel algab ja lõpeb samade ainetega.
Kuna iga glükoosi molekul moodustab glükolüüsiga kaks pürovaadi molekuli, vajab iga glükoosi molekul kahte sidereaktsiooni ja kahte ringlust Krebsi ringluses (selle tõttu, kui arvutada ringluse tulemit, tuleb arvestada kaht kogumit tulemeid).
Sidereaktsiooni ja Krebsi tsükli tulemid on:
- 8 NADH+ H molekuli
- 2 FADH2 molekuli
- 2 ATP molekuli
- 6 süsinikdioksiidi molekuli
Üldistus
Raku hingamine on eksotermiline protsess. Vabaneb energia, mis salvestub ATP molekulides aga ka soojuse kujul. Üldisemas mõttes moodustab see eluslooduse suurema tsükli koos autotroofides toimuvate endotermiliste reaktsioonidega, fotosünteesiga. Fotosünteesi võib vaadelda kui rakuhingamise vastandprotsessi. Esimeses laguneb süsihappegaas, vesi ja ühe jäägina eraldub hapnik, teises vastupidi. (Fotosünteesi teostavad organismid on näide nende mõlema protsessi koostoimest. Kui valgust pole, saavad fotosünteesijad samuti energiat rakuhingamise reaktsioonidest, lagundades eneste poolt valmistatud toitu). Nii moodustavad need kaks eluliselt tähtsat reaktsiooni omavahelise terviku. See on hea näide looduses toimuvast dünaamilisest tasakaalust.
kolmapäev, 11. veebruar 2026
Rakukest
Rakukest on rakumembraanist väljaspool olev kest.
Rakukest esineb taimerakkudel ja seenerakkudel, loomarakkudel aga enamasti puudub. Rakukest annab rakule tugevuse ja kindla kuju.
Rakukesta materjaliks on enamasti tselluloos, hemitselluloos või
kitiin.
Taimede rakukesta ehitus
Rakukest koosneb kolmest kihist, moodustades küllalt tugeva rakuümbrise, mis suudab vastu seista osmootsele rõhule. Rakukestade paksus kõigub 0,1 kuni mõne mikromeetrini ja nende ehitus annab taimele tugevuse.
Maal levinud taimsest materjalist moodustavad põhimassi kolm biopolümeeri, mis on põhilised rakukesta ehitusmaterjalid. Need on tselluloos, ligniin ja hemitselluloos, vastavalt keskmiselt 33, 30 ja 20 protsenti biomassist. Puidus on nende sisaldus vastavalt 40–50%, 20–30% ja 20–30%. Erinevalt tselluloosist ja hemitselluloosist, mis on polüsahhariidid, on ligniin oluliselt varieeruva struktuuriga polümeer, milles prevaleerivad aromaatsed (benseeni) tsüklid. Ligniin seondub keemiliselt hemitselluloosiga (polüsahhariididega), seega aitab tugevdada rakukesta ja kogu taime. Lisaks nimetatud põhikomponentidele on rakukestades mitmeid ühendeid, mis modifitseerivad selle tugevust ja läbilaskvust.
Puitumine on polüsahhariidide ja ligniini ladestumine taime raku seintesse, mille tulemusena muutub taime vars jäigaks.
teisipäev, 10. veebruar 2026
Pooldumine
Pooldumine on organismide vegetatiivne sigimisviis ja ühtlasi rakujagunemine, mille tagajärjel vastav rakk jaguneb kaheks suhteliselt võrdseks osaks.
Pooldumine sigimisviisina esineb üherakulistel organismidel (sealhulgas bakteritel, vetikatel) ja mõningail hulkraksel organismil, näiteks teatud ainuõõssetel ja rõngussidel.
esmaspäev, 9. veebruar 2026
Vähirakk
Vähirakuks (inglise keeles cancer cell) nimetatakse osade loomade (tõenäoliselt ainuõõsete hõimkonnast alates) uudismoodustistes teatud rakusiseste genoomimuutuste tagajärjel kujunenud ja iseseisvalt talitlevat rakutüüpi, mis võib kontrollimatult, invasiivselt ja infiltreerivalt ümbritsevatesse kudedesse vohada, kasvajakoldeid moodustada, metastaase anda ning vähktõbe ja koguni surma põhjustada.
Vähiraku anatoomia ja füsioloogia
Tuumake
Raku tuumas asuvates tuumake(st)es aset leidvaid mitmeid rakutsükli muutusi seostatakse rakkude soovimatu paljunemise ja tumorigeneesiga.
Arvatakse, et vähirakkudes on erinevate tegurite toimel tuumakeste aktiivsus suurenenud ja ribosoomalse RNA süntees muutunud tavalisest kiiremaks.
Tsentrosoom
Tsentrosoomid on loomarakkudes mikrotuubuleid organiseerivad keskused või piirkonnad, milles paiknevad tsentrioolid. Tsentrosoomide kohta teatakse vähe kuid arvatakse, et nende funktsioonide hulka kuuluvad ka kromosoomipaaride segregatsioon meioosis ja tsütoplasma ning rakuorganellide lõpliku jagunemise tagamine, pärast rakutsükli lõppemist.
1914. aastal pakkus Theodor Boveri välja teooria, mis sidus tsentrosoomide amplifiktsiooni ja kromosomaalse ebastabiilsuse teket pahaloomuliste kasvajarakkude arenguga.
Vähiraku geneetika
Vähirakkude täpseid arengu ja taandarengumehhanisme ei tunta.
Üks vähirakk või vähirakkude kogum on kasvaja algmeks.
Genoomimuutused võivad olla kromosoomide tasemel või DNA-tasemel. Raku võivad vähirakuks suunata mutatsioonide esinemine nii jagunemist, kasvu, diferentseerumist ja programmeeritud rakusurma juhtivates geenides, ning rakk muutub käitumiselt pahaloomuliseks.
Selgroogsete vähirakus võib olla isegi 10 000 – 100 000 mutatsiooni (nii somaatilisi kui pärilikke). Somaatilised muutused on organismi eluajal paikselt toimuvad muutused ja ei ole üldjuhul pärilikud (inimestel esineb sagedamini kasvajavastane geeni TP53 mutatsiooni).
Enamiku kasvajate korral ei ole rakkude kontrollimatu vohamine põhjustatud ainult üksikust protoonkogeeni kontrollimatust aktivatsioonist (punktmutatsioonid) või tuumori supressorgeeni inaktivatsioonist.
Vähkkasvaja koed on valdavalt monoklonaalsed, pärinedes ühest emarakust, mis saab kasvueelise.
Osad vähirakkude tüübid võivad pärineda ka kasvaja tüvirakkudest.
Vähiraku tundemärgid on järgmised:
- teatud arengujärgus rakkude geenide mutatsioonid ja uue fenotüübi kujunemine
- autonoomsus kasvu soodustavatest signaalidest – vähirakk toodab enda jagunemiseks soodustavaid signaale ise näiteks onkogeenid e aktivatsiooni kaudu, vähirakkude mitootiline aktiivsus on harilikult suurem kui vastava koe harilikel rakkudel;
- autonoomsus kasvu piiravatest signaalidest – vähirakkude kasvajavastased geenid on inaktiveerunud;
- programmeeritud rakusurma vältimine – täpseid mehhanisme ei teata arvatakse, et võib seisneda kas onkogeenide aktivatsioonis või kasvajavastaste geenide inaktivatsioonis;
- ebanormaalne uussoonestumine;
- DNA kahjustumine;
- immuunjärelevalvemehhanismide 'eksitamine';
- invasioon ümbritsevatesse kudedesse, metastaseerumine ja siirete moodustamine.
Vähirakkudel on täiesti uus genotüüp, mis aga võib ühe kasvajakolde piires samuti erineda, osad vähirakud ei ole liigispetsiifilised. Vähirakk on iseseisev ega sõltu ümbritsevatest keharakkudest, sünteesides ja eritades tsütokiine, elukohale vastavat tüüpi kasvufaktoreid ja ise neile reageerides, kasvades kas kiiresti või aeglaselt, endofüütselt või eksfüütselt ning liikudes teatavate mehhanismide abiga vere- ja lümfisoonte kaudu ühest elundist teise. Selleks kasutavad pahaloomulised kasvajarakud kasvusignaale mis kutsuvad esile neovaskularisatsiooni – veresoonte kontrollimatu tekke ja 'puhkemise' (ingl sprouting). Kapillaaride ja suuremate veresoonte uussoonestumist peetakse oluliseks teguriks osade kasvajate arengul vähktõveks. Neovaskularisatsiooni keskseks kasvufaktoriks peetakse siin vere- ja lümfisoonte endoteeli kasvu ja diferentseerumist reguleerivat kasvufatorit VEGF.
Teatud vähirakud toodavad ka immunoglobuliine.
Arvatakse, et vähirakul on palju sarnasusi tüvirakkudega ja vähirakud võivad hakata paljunema inimese kõigis kudedes.
Kopsuvähi rakud
Kopsuvähi klassifitseerimisel ja rühmitamisel ning fenotüübi määramisel soovitatakse kasutada mitte vähiraku vaid vähiraku tuuma suurust, kuna selles paikneb DNA.
Vähi kujunemisega seotud geenid
Vähi tekkele viivaid mutatsioone on tuvastatud paljudes geenides. Vähi kujunemisega seotud geenid liigitatakse kahte põhirühma: onkogeenid ja kasvajavastased geenid.
Paraneoplastilised sündroomid
Paraneoplastilisi sündroome kutsuvad esile vähirakkude eritatud signaalmolekulid või mediaatorained (hormoonid, peptiidid, tsütokiinid, immunoglobuliinid jt) ja lümfoid(-immuun)süsteemi üsna võimsad vastused neile.
Molekulid
Vähirakkude adenosiintrifosfaadi sisaldus on võrreldes normaalsete rakkude omaga suur.
Uuringud näitavad, et soolevähi rakud sünteesivad immunoregulatoorseid glükokortikoide, mis võivad inhibeerida immuunrakkude aktivatsiooni ja soodustada nende surma.
Uuringud inditseerivad, et rakukolesterool sünteesitakse kas rakus endas või tõmmatakse väljast rakku ja tarbitakse vähiraku poolt. Kolesterooli vastuvõttu vahendavad kõrgtihedusega lipoproteiinide püüdurretseptorid SR-BI (Scavenger receptor class B member 1) ja madaltihedusega lipoproteiinid LDLR. Normaalseks peetavates kudedes ekspresseeritakse SR-BI maksas ja steroidogeensetes kudedes, kus kolesterooli ringlus on vajalik steroidhormoonide sünteesiks. On tõendeid selle kohta, et SR-BI mängib rolli eesnäärme kartsinoomi välja kujunemisel.
Glutatioon
Kui kasvaja on välja kujunenud, siis võib glutatiooni kõrgenenud tase vähirakkudes kaitsta neid kemoteraapia ravimite eest.
Vähkkasvajas on glutatiooni metabolismil nii inhibeeriv kui patogeenseid protsesse edendav roll. Arvatakse, et glutatioonil on tähtis roll kartsinogeenide detoksifikatsioonil. Rakusisese glutatiooni kõrgenenud tase vähirakkudes suudab inhibeerida mitut tüüpi vähirakkudele suunatud kemoteraapiaagensite kahjulikku toimet.
Puriin
Puriini ja pürimidiini süntees on vähirakkudes ülesreguleeritud.
Tsütokiinid
Kasvaja kasvutegur beeta
Kasvaja kasvutegur beeta (TGFβ) on tsütokiini tüüp, mis mõjutab rakkude kasvu ja diferentseerumist.
Karolinska instituudi teadurite uuringud näitavad, et just see eritatav tsütokiin varustab vähiraku pinda valgete verelibledele omaste retseptoritega selliselt, et need pääseksid immuunjärelevalvele võimalikult märkamatult lümfisüsteemi.
Retseptorid
Eri tüüpi vähirakkudel on tuvastatud opioidiretseptorid. Nende retseptorite roll vähirakkude kasvul ja migratsioonil ei ole selge.
Onkoloogia
Pahaloomuliste kasvajarakkude diferentseerumise astme ja kliinilise kulu alusel jagatakse kasvajad healoomulisteks, piirpahaloomulisteks või pahaloomulisteks kasvajateks.
Kasvajarakkude moodustatud kasvajakollete eemaldamiseks võidakse kasutada ka operatiivset ravi, kuid kuna pahaloomulised kasvajad on ümbritsevate kudedega tihedalt seotud võib kasvaja eemaldamine võimatuks osutuda ja taasteket, milleks arvatakse üksiku infiltreerunud vähiraku olemasolust piisavat, ei saada välistada.
Mitmed kasvajarakkude populatsioonid võivad arendada välja resistentsuse nii hormoon-, keemia-, bioloogilise kui ka kiiritusravi suhtes.
reede, 30. jaanuar 2026
Regulatoorsed T-rakud
Regulatoorsed T-lümfotsüüdid ehk regulatoorsed T-rakud ehk supressor-T-rakud (inglise regulatory T cells, Treg cells) on paljude selgroogsete lümfisüsteemi (lümfoid(-immuun)süsteemi) rakud.
Esmased regulatoorsete T-rakkude populatsioonid küpsevad harkelundis. Nad liigitatakse T-lümfotsüütide hulka.
Ülesanded
Regulatoorsete T-rakkude molekulaartasandi funktsioonid on seni lõpuni uurimata. Arvatakse, et nad reguleerivad (püüavad piirata) krooniliste põletikega seotud haigusi, kuid nad piiravad ka eluterveid immuunvastuseid supresseerides kasvajatevastast immuunvastust.
Nende ülesandeks on immuunvastuse supresseerimine. Nad reguleerivad (harilikult vähemuse poole) plasmarakkude ja tsütotoksiliste T-rakkude ning autoreaktiivsete T-rakkude aktiivsust.
Nende talitluse häirumine, ülereageerimine või lakkamine aga võib indutseerida väärimmuunvastuse kujunemist ja seetõttu seostatakse neid ka autoimmuunhaiguste
väljakujunemisega.
Regulatoorsed T-rakud ekspresseerivad dopamiiniretseptoreid ja sisaldavad dopamiini.
Liigitus
Regulatoorsete T-rakkude liigitus pole päris selge, kuid enamasti liigitatakse regulatoorsete T-rakkude hulka järgmised rakud:
- CD4+-CD25+-T-reg-rakud,
- Tr1-rakud,
- CD8+-regulatoorsed rakud,
- Th3 rakud ehk Th3- tüüpi rakud (TH3-lümfotsüüdid) (need liigitatakse vahel ka T-abistajarakkude alaliikide hulka),
- looduslikud tappur-T-rakud (need liigitatakse vahel ka T-lümfotsüütide põhigruppide hulka).
Kliiniline meditsiin
Arvatakse, et regulatoorsed T-rakud osalevad mitmete autoimmuunhaiguste limiteerimisel nagu I tüüpi diabeet, astma ja põletikuline soolehaigus (IBD).
Regulatoorsed T-rakud on aktiivsed ka mitmete geneetiliste haiguste nagu sarkoidoos ja IPEX sündroom (IPEX − immunodysregulation polyendocrinopathy) põletikukolletes.
Pahaloomulistes kasvajates
Regulatoorsete T-rakkude populatsioonid on suurenenud mitmete pahaloomuliste kasvajate kolletes.
Ajaloolist
Regulatoorsete T-rakkude olemasolu oli pikka aega vaidlustatud.
- 1971 teatasid Richard K. Gershon ja Kondo, et on tuvastanud nn supressor-T-rakud.
kolmapäev, 28. jaanuar 2026
Antikehad
Antikehad ehk immunoglobuliinid (ka immuunkehad, kaitsekehad, ladina keeles immunoglobulinum; lüh: Ig) on kehavedelikes lahustuvad väga erineva molekulmassi ja funktsioonidega essentsiaalsed molekulid, mis liigitatakse glükoproteiinide hulka ja mida toodavad selgroogsete loomade (sh inimese) immuunsüsteemi B-lümfotsüüdid. Immunoglobuliinidel on omadus ära tunda ja endaga siduda antigeene (milleks on normaalsel juhul organismile võõrad ained). Inimorganismis leidub vähemalt 107, võib-olla kuni 109 erineva äratundmis-spetsiifikaga antikehade tüüpi.
Immunoglobuliinide areng, morfoloogia, funktsioonid ja patoloogia erinevad nii liigiti kui ka indiviiditi. Immunoglobuliinide hulk ja süntees oleneb organismi vanusest, aga ka paljudest muudest teguritest.
Teatud immunoglobuliini toodavad ka mitmete pahaloomuliste kasvajate rakud.
Üldstruktuur
Kõigile antikehadele on omane sarnane üldstruktuur: nad koosnevad neljast disulfiidsildadega ühendatud valguahelast. Kaht suuremat ja omavahel identset ahelat nimetatakse rasketeks ehk H-ahelateks (ingl.k heavy chains), kaht väiksemat ning samuti omavahel identset ahelat nimetatakse kergeteks ehk L-ahelateks (inglise light chains). Raske ahel koosneb neljast eri geeniosade kodeeritud valgudomeenist, mida tähistatakse (N-otsast lugedes) VH, CH1, CH2, CH3. Neist VH on väga muutliku ehitusega ja moodustab ühe osa antigeeni äratundvast tsentrist, ülejäänud kolm domeeni on eri antikehadel üsna sarnase ehitusega. CH2, CH3 ehitus erineb veidi eri antikehade isotüüpidel (vt antikehade tüübid). CH2 domeenis paiknevad Fc retseptorite ja komplemendi-sidumissaidid (vt antikehade osa immuunvastuses), samuti kaks raskeid ahelaid koos hoidvat disulfiidsilda. CH1 domeenis paikneb kerget ja rasket ahelat ühendav disulfiidsild. CH1 ja CH2 domeenide vahel paikneb kergesti liikuv nn hinge-regioon.
Kerge ahel koosneb kahest, VL ja CL domeenist. VL on varieeruva ehitusega ja moodustab teise poole antigeeni äratundvast tsentrist, CL on aga kindla ehitusega ja ühendatud disulfiidsillaga CH1 domeeni külge.
Antikehade põhiklassid
Hoolimata üldisest sarnasusest saab antikehi ehituse alusel jagada mitmeks klassiks ja alamklassiks. Neid klasse nimetatakse isotüüpideks ja nende erinevused tulenevad vastavate raskete ahelate struktuuride erinevustest.
Madudel
Madudel on tuvastatud järgmised immunoglobuliinide klassid:
- immunoglobuliin D (IgD)
- immunoglobuliin M (IgM)
- immunoglobuliin Y (IgY) – (IgYa ja IgYb-)
Hobustel
Hobustel on tuvastatud immunoglobuliinide klassid ja alamklassid: IgA, IgE, IgM ja IgG – IgG2a, IgG2b, IgG2c, IgGI, IgG(T).
Hobuseid kasutatakse maomürgivastaste antiseerumite (töödeldud immunoglobuliinid) tootmisel, selleks immuniseeritakse (süstitakse) hobuseid erinevat liiki mürkmadude mürgiga ja seejärel eraldatakse neist immunoglobuliinid vastumürkide tarvis.
Inimese antikehade põhiklassid
Inimesel esinevad antikehade põhiklassid on:
- immunoglobuliin A (IgA)
- immunoglobuliin D (IgD)
- immunoglobuliin E (IgE)
- immunoglobuliin G (IgG)
- immunoglobuliin M (IgM)
Klassidesse kuuluvaid immunoglobuliine nimetatakse vastavalt IgA, IgD, IgE, IgG ja IgM tüüpi antikehadeks.
Neist koguseliselt kõige rohkem esineb tervel inimesel IgG-d. IgA esineb monomeeride või nn j-ahelate abil ühinenud dimeeride või trimeeridena. IgM esineb ainult pentameersena. IgE ja IgM eripäraks on ka hinge-regiooni puudumine. Eri antikehade isotüüpidel on veidi erinevad bioloogilised funktsioonid (vt antikehade osa immuunvastuses).
Antikehade tootmine ja geenid
Antikehade geenid kuuluvad suurde ja mitmekesisesse Ig superperekonda. Nad teevad organismi arengu käigus läbi mitmeid keerulisi ümberkorraldusi.
Immunoglobuliini geenid kahe kerge ahela jaoks (κ-ahel ja λ-ahel) asuvad inimesel vastavalt 2 ja 22 kromosoomil, geenid eri isotüüpide raskete ahelate jaoks aga 14 kromosoomil. Kerge ahela geen sisaldab (5'-otsast lugedes) umbes 100 erinevat V-domeenide järjestust (neile eelnevate signaalpeptiid-järjestustega), seejärel nn J-järjestused ja 1–6 C-domeeni järjestust. Raske ahela geenid sisaldavad samuti kõigepealt V-domeenide järjestusi (umbes 200 erinevat), seejärel üle 20 D-segmendi ('diversity-segment', kodeerib V-domeeni C-otsa), seejärel eri isotüüpide alamklasside C-domeenide järjestused.
B-lümfotsüütide arenemisel toimub esimese ümberkorraldusena raskete ahelate geenide ühe D-regiooni ja ühe J-regiooni ühinemine koos nende vahele jääva DNA deletsiooniga (väljalõikamisega). Seejärel kõrvaldatakse ülejäänud D-regioonid, misjärel toimub ühe V-regiooni liitmine ühinenud DJ-regioonile. Saadud geenis on nüüd valmis antikeha raske ahela N-ots ja sellele järgnevad intronitega lahutatud eri isotüüpide C-domeenide järjestused.
Geeni transkriptsiooni järel toimuva splaisingu tulemusena tekib mRNA, mis sisaldab ainult ühe isotüübi C-domeenide järjestusi.
Geenide ümberkorraldused kergete ahelate puhul on sarnased, ei toimu ainult D- ja J-regioonide ühinemist (kuna kergetes ahelates puuduvad D-regioonid). mRNA-de translatsiooni järel saadud kerged ja rasked ahelad ühendatakse omavahel teatud ensüümide abil disulfiidsildadega, glükosüleeritakse ja sekreteeritakse.
Patoloogia
Immunoglobuliinide taseme ja puuduliku sünteesiga seostatakse mitut immuunpuudulikkusega seotud haigust.
teisipäev, 27. jaanuar 2026
T-rakkude retseptorid
T-rakkude retseptorid (ingl T-cell receptors, TCR, ka TcR) on lümfoid(-immuun)süsteemiga loomadel T-rakkude membraanil paiknevad valkude kompleksid ja immuunretseptorid, mille ülesandeks on antigeenide äratundmine üksnes läbi organismiomaste MHC-molekulide ja immuunvastuse regulatsioon.
T-rakkude koolitamine MHC-molekulide tunnistamiseks toimub tüümuses.
Nii näiteks tunnevad T-rakkude retseptorid ehk TCR-molekulid ära kehavõõraste antigeenide olemasolu viirusega nakatatud rakumembraanil koos raku enda peamise koesobivuskompleksi (inimestel HLA) antigeenidega.
TCR-molekulid aktiveeritakse biokeemiliste sündmuste toimel, mille vahendajateks on ensüümid, koretseptorid, spetsiaalsed molekulid ja aktiveeritud või vabastatud transkriptsioonifaktorid.
TCR-molekulide aktiveerimise tulemina võidakse suunata T-rakkude diferentseerumist T-abistajarakkudeks või tsütotoksilisteks T-rakkudeks ja paljunemist ning geeniekspressiooni muutmist.
T-rakkude retseptorid koosnevad kahest erinevast valguahelast kas α ja β või γ/δ ahelatest, mida kodeerivad vastavad geenid, mõlemad αβ ja γδ T-rakud on võimelised tsütokiine sünteesima ja mikroorganismidele ning vähirakkudele toksilisi aineid eritama.
Lisaks TCR pinnaretseptoritele espresseerivad tümotsüüdid ka mitmeid teisi antigeene, näiteks CD-sid.
T-rakkude retseptorid erinevad immunoglobuliinidest.
esmaspäev, 26. jaanuar 2026
T-rakkude kurnatus
T-rakkude kurnatust on täheldatud kroonilise lümfotsüütkoriomeningiidi korral ja seisund tekib antikehade resistentsuse seisundi (antigen-persistence) tõttu, mida aga esineb mitmete krooniliste nakkustekitatajate leviku korral inimkehas, nagu B-hepatiidi viirus, C-hepatiidi viirus, HI-viiruse ja ka kasvajate 'väljakasvul' (teiste elundite hõivel).
T-rakkude kurnatus oleneb paljudest teguritest, nende hulgas antigeense aktivatsiooni kestvus ja ulatus, CD4 T-rakkude abi, stimuleerivate ja supresseerivate tsütokiinide olemasolu ja ka aktiveerivate ja inhibeerivate retseptorite olemasolu.
Võimetus vastata ja toimida ei piirdu ainult CD8 T-rakkude vastustega ka CD4 T-rakkudel esineb mitmete infektsioonide korral talitlushäireid. Kurnatud rakkude vastuseid on dokumenteeritud nakatumiste korral järgmiste allikatega: polyomaviruses, lümfotsüütkoriomeningiit, adenoviirused, Friend leukaemia virus, hiire hepatiidi viirus, HI-viirus, B- ja C-hepatiidi viirus.
Talitlushäirega seostatakse nende rakkude võimetust eritada IL-2, TNFα ja IFNγ.
T-rakkude hääbumisel on oma roll IL-10 tootmisel.
Malaariauuringutes on uuritud PD-1 mehhanismi osalust (valk, mis reguleerib T-rakkude aktivatsiooni (immunoloogiline sünaps) ja võimalik, et toodud valk osaleb T-rakkude "vaigistamisel" – uuringud näitasid CD4+ T-rakkude (tüümusest küpsenud Th rakud) jõuetust ja suremist ning CD8+ T-rakkude arvukuse vähenemist ja raku programmeeritud surma esilekutsumist.
kolmapäev, 7. jaanuar 2026
Resiktaasid
Restriktaasid (sait-spetsiifilised endonukleaasid) on ensüümid, mis lõikavad DNA-ahelat kindlate nukleotiidsete järjestuste juurest. Selliseid spetsiifilisi järjestusi nimetatakse restriktsioonisaitideks.
Restriktaase on leitud bakteritest ja arhedest, kus need kaitsevad rakku sissetungivate viiruste eest. Prokarüootides lõikavad restriktaasid vaid võõrast DNA-d, raku enda DNA-d kaitseb restriktaasi eest metülaas, metüleerides A ja C nukleotiidid. Sellist kaitsemehhanismi nimetatakse restriktsiooni-modifikatsiooni süsteemiks.
Praeguseks on põhjalikult uuritud üle 3000 restriktaasi ja neist ligikaudu 600 kasutatakse igapäevaselt laborites, et DNA-d modifitseerida ja manipuleerida.
Ajalugu
Esimene bakteritest isoleeritud restriktaas oli HindII. See eraldati 1970. aastal bakterist Haemophilus influenzae. Selle ja veel mitme restriktaasi avastamise eest anti 1978. aastal Nobeli füsioloogia- või meditsiiniauhind kolmele teadlasele: Daniel Nathans, Werner Arber ja Hamilton O. Smith. Nende avastus pani aluse rekombinantse DNA tehnoloogia arengule, millel on väga palju kasutusalasid, näiteks saab selle tehnoloogia abil kasutada E. coli baktereid kiireks ja suuremahuliseks insuliini tootmiseks.
Restriktsioonisait
Restriktaasid tunnevad ära teatud nukleotiidse järjestuse ja lõikavad läbi DNA kaksikheeliksi mõlemad ahelad. Restriktsioonisaidis on enamasti 4–8 nukleotiidi ja tihti on see palindroomne, mis tähendab, et nukleotiidide järjestus on mõlemat pidi lugedes sama. DNA-l on kaks palindroomse järjestuse võimalust. Peegelpalindroom (ingl mirror-like palindrome) on sarnane palindroomidega, mis esinevad keeles, näiteks "udu". DNA-järjestuses on peegelpalindroom näiteks GTAATG. Pöördkorduv palindroom (ingl inverted repeat palindrome) on samuti mõlemat pidi samasugune, kuid palindroom esineb komplementaarsetes DNA-ahelates, näiteks järjestuse GTATAC puhul, millele komplementaarne järjestus on CATATG. Pöördkorduvad palindroomid esinevad sagedamini ja omavad suuremat tähtsust kui peegelpalindroomid. Palindroomid võivad ahelates tekitada "volte", kus osa ahelast jääb U-kujuliselt üheahelaliseks.
EcoRI restriktaas jätab lõigates kleepuvad otsad:
SmaI restriktaas jätab lõigates tömbid otsad:
Äratundmisjärjestus on restriktaasidel erinev, mistõttu tekivad lõigates eri pikkusega kleepuvad otsad. Need võivad asuda nii peaahelal kui komplementaarsel ahelal.
Restriktaase, mis tunnevad ära sama järjestuse, kuid lõikavad erinevatest kohtadest, nimetatakse neoskisomeerideks. Ensüüme, mis tunnevad ära sama järjestuse ja ka lõikavad samade nukleotiidide vahelt, nimetatakse isoskisomeerideks.
Tüübid
Restriktaasid jagatakse nelja gruppi (I, II, III ja IV tüüpi) nende struktuuri, vajaliku kofaktori, äratundmisjärjestuse ja restriktsioonisaidi järgi. Kõik restriktaasid tunnevad ära kindla järjestuse ja teevad endonukleolüütilise lõike sellisel viisil, et tekiksid kindla järjestusega 5’ ja 3’ otsad. Nende eristamistunnused on järgnevad:
- I tüüpi ensüümide (EC 3.1.21.3) restriktsioonisait asub äratundmisjärjestusest eemal. Need vajavad funktsioneerimiseks nii ATP-d kui S-adenosüülmetioniini. On multifunktsionaalsed valgud, millel on nii restriktsiooni kui metülaasi (EC 2.1.1.72) ülesanded.
- II tüüpi ensüümide (EC 3.1.21.4) restriktsioonisait asub äratundmisjärjestuse sees või selle lähedal. Enamik neist vajavad magneesiumi. Need on vaid restriktsioonifunktsiooniga metülaasist sõltumatud valgud.
- III tüüpi ensüümide (EC 3.1.21.5) restriktsioonisait asub äratundmisjärjestuse lähedal. Need vajavad ATP-d (kuid ei hüdrolüüsi seda). S-adenosüülmetioniin stimuleerib reaktsiooni, kuid ei ole vajalik selle toimumiseks. Esineb osana suuremast valgust koos modifitseeriva metülaasiga (EC 2.1.1.72).
- IV tüüpi ensüümid seonduvad modifitseeritud (näiteks metüleeritud, hüdroksümetüleeritud või glükosüül-hüdroksümetüleeritud) DNA-ga. Need on bakteri viimase järgu kaitseensüümid.
I tüüp
I tüüpi restriktaasid olid esimesed, mis avastati ja mille omadusi iseloomustati. Need isoleeriti E. coli bakterist. I tüüpi restriktaaside restriktsioonisait erineb ja on vähemalt 1000 aluspaari kaugusel nende äratundmisjärjestusest. Lõikamine järgneb DNA translokatsioonile, mis tähendab, et need ensüümid on ka molekulaarmootorid. Äratundmisjärjestus on asümmeetriline ja koosneb kahest osast: ühes 3–4 nukleotiidi, teises 4–5 nukleotiidi. Neid eraldab mittespetsiifiline 6–8 nukleotiidi pikkune vaheala. Sellised ensüümid on multifunktsionaalsed ning on sõltuvalt DNA metüleeritusest võimelised nii restriktsiooniks kui modifitseerimiseks. Täielikuks aktiivsuseks on neil vaja kofaktoreid S-adenosüülmetioniini, hüdrolüüsitud ATP-d ja magneesiumiioone (Mg2+). I tüüpi restriktaasidel on 3 allüksust: HsdR, HsdM ja HsdS. HsdR on vajalik restriktsiooniks, HsdM on vajalik DNA metüleerimiseks ja HsdS on vajalik nii mõlemaks eelnevaks ülesandeks kui ka DNA-ga seondumiseks.
II tüüp
II tüüpi restriktaasid erinevad I tüüpi restriktaasidest mitmel moel. Need moodustavad homodimeere, mille äratundmisjärjestused on enamasti lahutamata palindroomid, mis on 4–8 nukleotiidi pikad. DNA-d lõikavad need sama koha pealt, kuhu seonduvad, ning ei vaja kofaktorina ATP-d ega S-adenosüülmetioniini, vaid ainult Mg2+ iooni. Selle rühma ensüüme kasutatakse enim ja need on teaduslaborites laialt levinud. 1990. aastatel ja 2000. aastate alguses leiti sellest klassist uusi ensüüme, mis ei vastanud täpselt eelpool mainitud tingimustele. Seetõttu loodi alamklassid, kuhu jaotada ensüüme vastavalt nende erinevustele rühma põhitüübist. Alamklassidele on lisatud järelliide.
IIB tüüpi restriktaasid (nt BcgI ja BplI) on multimeerid, mis tähendab, et need koosnevad rohkem kui ühest allüksusest. IIB tüüpi restriktaasid lõikavad ahela läbi mõlemalt poolt äratundmisjärjestust, lõigates kogu seondumisala ahelast välja. Need vajavad kofaktoritena S-adenosüülmetioniini ja Mg2+-ioone.
IIE tüüpi restriktaasid (nt NaeI) seonduvad oma äratundmisjärjestusega kahes kohas. Üks neist on replikatsioonisait, teist ala kasutab ensüüm allosteerilise aktivaatorina, mis kiirendab DNA lõikamist.
IIF tüüpi restriktaasid (nt NgoMIV) toimivad sarnaselt IIE tüüpi restriktaasidega, kuid lõikavad DNA järjestuse mõlemast seondumisalast korraga.
IIG tüüpi restriktaasidel (nt Eco57I) on sarnaselt II tüüpi restriktaasidega üks allüksus, kuid need vajavad kofaktorina S-adenosüülmetioniini.
IIM tüüpi restriktaasid (nt DpnI) tunnevad ära ja lõikavad metüleeritud DNA-d.
IIS tüüpi restriktaasid (nt FokI) lõikavad DNA-d kindla nukleotiidse järjestuse kauguselt oma äratundmisjärjestusest, mis on asümmeetriline ja mittepalindroomne. Need ensüümid võivad funktsioneerida dimeeridena.
IIT tüüpi restriktaasid (nt Bpu10I ja BslI) koosnevad kahest erinevast allüksusest. Mõned selle alamklassi ensüümid seonduvad palindroomse järjestusega, teised asümmeetrilise järjestusega.
III tüüp
III tüüpi restriktaasidel (nt EcoP15) on kaks erinevat mittepalindroomset äratundmisjärjestust, mis on vastassuunalised. Ensüüm lõikab DNA-ahela läbi 20–30 aluspaari kauguselt seondumisalast. Nendel ensüümidel on mitu allüksust, need täidavad nii metüleerimise kui restriktsiooni ülesannet ning need vajavad S-adenosüülmetioniini ja ATP-d. Selliseid restriktaase kasutavad prokarüoodid selleks, et kaitsta end sissetungiva võõra DNA eest. III tüüpi restriktaasid on hetero-oligomeersed multifunktsionaalsed valgud, mis koosnevad kahest allüksusest (Res ja Mod). Mod-allüksus tunneb ära spetsiifilise DNA järjestuse ja on DNA modifitseerimiseks vajalik metüültransferaas. Res on vajalik restriktsiooniks, kuid iseseisvalt pole see aktiivne. III tüüpi restriktaasidel on 5–6 aluspaari pikkused asümmeetrilised äratundmisjärjestused ning need lõikavad DNA-ahela läbi 25–27 aluspaari kauguselt pärisuunas, jättes vabaks lühikese üheahelalise üleulatuva 5’ otsa. Selleks, et ensüüm lõikaks, on vaja kaht vastupidise suunaga metüleerimata äratundmisjärjestust. III tüüpi ensüümid metüleerivad adenosüüljäägi N-6-positsioonil ühe DNA-ahela, seega on värskelt replitseeritud DNA-l vaid üks metüleeritud ahel, kuid see on piisav, et kaitsta seda uue restriktsiooni eest.
Tehislikud restriktaasid
Tehislikke restriktaase valmistatakse, liites looduslikke või tehislikke DNA seondumisdomeene nukleaasdomeenidega (selleks on sageli IIS tüüpi restriktaasi FokI-i restriktsioonidomeen). Sünteetilised restriktaasid suudavad ära tunda suuri saite (kuni 36 aluspaari) ja neid võib panna seonduma mis tahes DNA-järjestusega. Tsinksõrmnukleaasid on geenitehnoloogias enim kasutatavad tehislikud restriktaasid.
Näited
Näiteid restriktaasidest:
| Ensüüm | Allikas | Spetsiifiline järjestus | Lõige |
|---|---|---|---|
| EcoRI | Escherichia coli | 5'GAATTC 3'CTTAAG | 5'---G AATTC---3' 3'---CTTAA G---5' |
| EcoRII | Escherichia coli | 5'CCWGG 3'GGWCC | 5'--- CCWGG---3' 3'---GGWCC ---5' |
| BamHI | Bacillus amyloliquefaciens | 5'GGATCC 3'CCTAGG | 5'---G GATCC---3' 3'---CCTAG G---5' |
| HindIII | Haemophilus influenzae | 5'AAGCTT 3'TTCGAA | 5'---A AGCTT---3' 3'---TTCGA A---5' |
| TaqI | Thermus aquaticus | 5'TCGA 3'AGCT | 5'---T CGA---3' 3'---AGC T---5' |
| NotI | Nocardia otitidis | 5'GCGGCCGC 3'CGCCGGCG | 5'---GC GGCCGC---3' 3'---CGCCGG CG---5' |
| HinfI | Haemophilus influenzae | 5'GANTCA 3'CTNAGT | 5'---G ANTC---3' 3'---CTNA G---5' |
| Sau3A | Staphylococcus aureus | 5'GATC 3'CTAG | 5'--- GATC---3' 3'---CTAG ---5' |
| PvuII* | Proteus vulgaris | 5'CAGCTG 3'GTCGAC | 5'---CAG CTG---3' 3'---GTC GAC---5' |
| SmaI* | Serratia marcescens | 5'CCCGGG 3'GGGCCC | 5'---CCC GGG---3' 3'---GGG CCC---5' |
| HaeIII* | Haemophilus aegyptius | 5'GGCC 3'CCGG | 5'---GG CC---3' 3'---CC GG---5' |
| HgaI | Haemophilus gallinarum | 5'GACGC 3'CTGCG | 5'---NN NN---3' 3'---NN NN---5' |
| AluI* | Arthrobacter luteus | 5'AGCT 3'TCGA | 5'---AG CT---3' 3'---TC GA---5' |
| EcoRV* | Escherichia coli | 5'GATATC 3'CTATAG | 5'---GAT ATC---3' 3'---CTA TAG---5' |
| EcoP15I | Escherichia coli | 5'CAGCAGN25NN 3'GTCGTCN25NN | 5'---CAGCAGN25NN ---3' 3'---GTCGTCN25 NN---5' |
| KpnI | Klebsiella pneumoniae | 5'GGTACC 3'CCATGG | 5'---GGTAC C---3' 3'---C CATGG---5' |
| PstI | Providencia stuartii | 5'CTGCAG 3'GACGTC | 5'---CTGCA G---3' 3'---G ACGTC---5' |
| SacI | Streptomyces achromogenes | 5'GAGCTC 3'CTCGAG | 5'---GAGCT C---3' 3'---C TCGAG---5' |
| SalI | Streptomyces albus | 5'GTCGAC 3'CAGCTG | 5'---G TCGAC---3' 3'---CAGCT G---5' |
| ScaI | Streptomyces caespitosus | 5'AGTACT 3'TCATGA | 5'---AGT ACT---3' 3'---TCA TGA---5' |
| SpeI | Sphaerotilus natans | 5'ACTAGT 3'TGATCA | 5'---A CTAGT---3' 3'---TGATC A---5' |
| SphI | Streptomyces phaeochromogenes | 5'GCATGC 3'CGTACG | 5'---GCATG C---3' 3'---C GTACG---5' |
| StuI | Streptomyces tubercidicus | 5'AGGCCT 3'TCCGGA | 5'---AGG CCT---3' 3'---TCC GGA---5' |
| XbaI | Xanthomonas badrii | 5'TCTAGA 3'AGATCT | 5'---T CTAGA---3' 3'---AGATC T---5' |
Tähistused:
* = tömp ots
N = C või G või T või A
W = A või T
-
Muusika astmed ei ole noodid. Astmete redel algab 1. astmest ja lõppeb 8. astmega. Kõikide helistike heliredel algab 1. astmest. Astmetel...
-
EESTI RAHVAKALENDRI PÜHAD: JAANUAR Talvine kalapüük Mootse talus . ERA, Foto 17846. Kolmekuningapäev (6. I) Nuudipäev (7. I)...