Otsing sellest blogist

UUS!!!

T-rakkude kurnatus

T-rakkude kurnatus  ehk  T-rakkude jõuetus  ( T-cell exhaustion ) on toimivate  T-rakkudega   selgroogsetel loomadel  esineda võiv kehasisen...

Kuvatud on postitused sildiga Tsütoloogia. Kuva kõik postitused
Kuvatud on postitused sildiga Tsütoloogia. Kuva kõik postitused

esmaspäev, 26. jaanuar 2026

T-rakkude kurnatus

T-rakkude kurnatust on täheldatud kroonilise lümfotsüütkoriomeningiidi korral ja seisund tekib antikehade resistentsuse seisundi (antigen-persistence) tõttu, mida aga esineb mitmete krooniliste nakkustekitatajate leviku korral inimkehas, nagu B-hepatiidi viirusC-hepatiidi viirusHI-viiruse ja ka kasvajate 'väljakasvul' (teiste elundite hõivel).

T-rakkude kurnatus oleneb paljudest teguritest, nende hulgas antigeense aktivatsiooni kestvus ja ulatus, CD4 T-rakkude abi, stimuleerivate ja supresseerivate tsütokiinide olemasolu ja ka aktiveerivate ja inhibeerivate retseptorite olemasolu.

Võimetus vastata ja toimida ei piirdu ainult CD8 T-rakkude vastustega ka CD4 T-rakkudel esineb mitmete infektsioonide korral talitlushäireid. Kurnatud rakkude vastuseid on dokumenteeritud nakatumiste korral järgmiste allikatega: polyomaviruses, lümfotsüütkoriomeningiit, adenoviirused, Friend leukaemia virus, hiire hepatiidi viirus, HI-viirus, B- ja C-hepatiidi viirus.

Talitlushäirega seostatakse nende rakkude võimetust eritada IL-2TNFα ja IFNγ.

T-rakkude hääbumisel on oma roll IL-10 tootmisel.

Malaariauuringutes on uuritud PD-1 mehhanismi osalust (valk, mis reguleerib T-rakkude aktivatsiooni (immunoloogiline sünaps) ja võimalik, et toodud valk osaleb T-rakkude "vaigistamisel" – uuringud näitasid CD4+ T-rakkude (tüümusest küpsenud Th rakud) jõuetust ja suremist ning CD8+ T-rakkude arvukuse vähenemist ja raku programmeeritud surma esilekutsumist.

kolmapäev, 7. jaanuar 2026

Resiktaasid

Restriktaasid (sait-spetsiifilised endonukleaasid) on ensüümid, mis lõikavad DNA-ahelat kindlate nukleotiidsete järjestuste juurest. Selliseid spetsiifilisi järjestusi nimetatakse restriktsioonisaitideks. 

Restriktaase on leitud bakteritest ja arhedest, kus need kaitsevad rakku sissetungivate viiruste eest. Prokarüootides lõikavad restriktaasid vaid võõrast DNA-d, raku enda DNA-d kaitseb restriktaasi eest metülaasmetüleerides A ja C nukleotiidid. Sellist kaitsemehhanismi nimetatakse restriktsiooni-modifikatsiooni süsteemiks.

Praeguseks on põhjalikult uuritud üle 3000 restriktaasi ja neist ligikaudu 600 kasutatakse igapäevaselt laborites, et DNA-d modifitseerida ja manipuleerida.

Ajalugu

Esimene bakteritest isoleeritud restriktaas oli HindII. See eraldati 1970. aastal bakterist Haemophilus influenzae.  Selle ja veel mitme restriktaasi avastamise eest anti 1978. aastal Nobeli füsioloogia- või meditsiiniauhind kolmele teadlasele: Daniel NathansWerner Arber ja Hamilton O. Smith. Nende avastus pani aluse rekombinantse DNA tehnoloogia arengule, millel on väga palju kasutusalasid, näiteks saab selle tehnoloogia abil kasutada E. coli baktereid kiireks ja suuremahuliseks insuliini tootmiseks.

Restriktsioonisait

Palindroomse ala järjestus on mõlemal ahelal sama, kui lugeda nukleotiide mõlemal ahelal samasuunaliselt (5’ otsast 3’ otsa).

Restriktaasid tunnevad ära teatud nukleotiidse järjestuse ja lõikavad läbi DNA kaksikheeliksi mõlemad ahelad. Restriktsioonisaidis on enamasti 4–8 nukleotiidi ja tihti on see palindroomne, mis tähendab, et nukleotiidide järjestus on mõlemat pidi lugedes sama. DNA-l on kaks palindroomse järjestuse võimalust. Peegelpalindroom (ingl mirror-like palindrome) on sarnane palindroomidega, mis esinevad keeles, näiteks "udu". DNA-järjestuses on peegelpalindroom näiteks GTAATG. Pöördkorduv palindroom (ingl inverted repeat palindrome) on samuti mõlemat pidi samasugune, kuid palindroom esineb komplementaarsetes DNA-ahelates, näiteks järjestuse GTATAC puhul, millele komplementaarne järjestus on CATATG. Pöördkorduvad palindroomid esinevad sagedamini ja omavad suuremat tähtsust kui peegelpalindroomid. Palindroomid võivad ahelates tekitada "volte", kus osa ahelast jääb U-kujuliselt üheahelaliseks.

EcoRI restriktaas jätab lõigates kleepuvad otsad:

EcoRI restriction enzyme recognition site.svg

SmaI restriktaas jätab lõigates tömbid otsad:

SmaI restriction enzyme recognition site.svg

Äratundmisjärjestus on restriktaasidel erinev, mistõttu tekivad lõigates eri pikkusega kleepuvad otsad. Need võivad asuda nii peaahelal kui komplementaarsel ahelal.

Restriktaase, mis tunnevad ära sama järjestuse, kuid lõikavad erinevatest kohtadest, nimetatakse neoskisomeerideks. Ensüüme, mis tunnevad ära sama järjestuse ja ka lõikavad samade nukleotiidide vahelt, nimetatakse isoskisomeerideks.

Tüübid

Restriktaasid jagatakse nelja gruppi (I, II, III ja IV tüüpi) nende struktuuri, vajaliku kofaktori, äratundmisjärjestuse ja restriktsioonisaidi järgi. Kõik restriktaasid tunnevad ära kindla järjestuse ja teevad endonukleolüütilise lõike sellisel viisil, et tekiksid kindla järjestusega 5’ ja 3’ otsad. Nende eristamistunnused on järgnevad:

  • I tüüpi ensüümide (EC 3.1.21.3) restriktsioonisait asub äratundmisjärjestusest eemal. Need vajavad funktsioneerimiseks nii ATP-d kui S-adenosüülmetioniini. On multifunktsionaalsed valgud, millel on nii restriktsiooni kui metülaasi (EC 2.1.1.72) ülesanded.
  • II tüüpi ensüümide (EC 3.1.21.4) restriktsioonisait asub äratundmisjärjestuse sees või selle lähedal. Enamik neist vajavad magneesiumi. Need on vaid restriktsioonifunktsiooniga metülaasist sõltumatud valgud.
  • III tüüpi ensüümide (EC 3.1.21.5) restriktsioonisait asub äratundmisjärjestuse lähedal. Need vajavad ATP-d (kuid ei hüdrolüüsi seda). S-adenosüülmetioniin stimuleerib reaktsiooni, kuid ei ole vajalik selle toimumiseks. Esineb osana suuremast valgust koos modifitseeriva metülaasiga (EC 2.1.1.72).
  • IV tüüpi ensüümid seonduvad modifitseeritud (näiteks metüleeritud, hüdroksümetüleeritud või glükosüül-hüdroksümetüleeritud) DNA-ga. Need on bakteri viimase järgu kaitseensüümid.

I tüüp

I tüüpi restriktaasid olid esimesed, mis avastati ja mille omadusi iseloomustati. Need isoleeriti E. coli bakterist. I tüüpi restriktaaside restriktsioonisait erineb ja on vähemalt 1000 aluspaari kaugusel nende äratundmisjärjestusest. Lõikamine järgneb DNA translokatsioonile, mis tähendab, et need ensüümid on ka molekulaarmootorid. Äratundmisjärjestus on asümmeetriline ja koosneb kahest osast: ühes 3–4 nukleotiidi, teises 4–5 nukleotiidi. Neid eraldab mittespetsiifiline 6–8 nukleotiidi pikkune vaheala. Sellised ensüümid on multifunktsionaalsed ning on sõltuvalt DNA metüleeritusest võimelised nii restriktsiooniks kui modifitseerimiseks. Täielikuks aktiivsuseks on neil vaja kofaktoreid S-adenosüülmetioniini, hüdrolüüsitud ATP-d ja magneesiumiioone (Mg2+). I tüüpi restriktaasidel on 3 allüksust: HsdRHsdM ja HsdS. HsdR on vajalik restriktsiooniks, HsdM on vajalik DNA metüleerimiseks ja HsdS on vajalik nii mõlemaks eelnevaks ülesandeks kui ka DNA-ga seondumiseks.

II tüüp

"Eco"RI restriktaasi struktuur (roheline ja sinine ala). Ensüüm seondub DNA kaksikheeliksi (pruun ala) külge. Ensüümi lõikamiskohale liitub kaks magneesiumi iooni (üks mõlemale monomeerile), mis tekitavad lünga DNA struktuuris

II tüüpi restriktaasid erinevad I tüüpi restriktaasidest mitmel moel. Need moodustavad homodimeere, mille äratundmisjärjestused on enamasti lahutamata palindroomid, mis on 4–8 nukleotiidi pikad. DNA-d lõikavad need sama koha pealt, kuhu seonduvad, ning ei vaja kofaktorina ATP-d ega S-adenosüülmetioniini, vaid ainult Mg2+ iooni. Selle rühma ensüüme kasutatakse enim ja need on teaduslaborites laialt levinud. 1990. aastatel ja 2000. aastate alguses leiti sellest klassist uusi ensüüme, mis ei vastanud täpselt eelpool mainitud tingimustele. Seetõttu loodi alamklassid, kuhu jaotada ensüüme vastavalt nende erinevustele rühma põhitüübist. Alamklassidele on lisatud järelliide.

IIB tüüpi restriktaasid (nt BcgI ja BplI) on multimeerid, mis tähendab, et need koosnevad rohkem kui ühest allüksusest. IIB tüüpi restriktaasid lõikavad ahela läbi mõlemalt poolt äratundmisjärjestust, lõigates kogu seondumisala ahelast välja. Need vajavad kofaktoritena S-adenosüülmetioniini ja Mg2+-ioone.

IIE tüüpi restriktaasid (nt NaeI) seonduvad oma äratundmisjärjestusega kahes kohas. Üks neist on replikatsioonisait, teist ala kasutab ensüüm allosteerilise aktivaatorina, mis kiirendab DNA lõikamist.

IIF tüüpi restriktaasid (nt NgoMIV) toimivad sarnaselt IIE tüüpi restriktaasidega, kuid lõikavad DNA järjestuse mõlemast seondumisalast korraga.

IIG tüüpi restriktaasidel (nt Eco57I) on sarnaselt II tüüpi restriktaasidega üks allüksus, kuid need vajavad kofaktorina S-adenosüülmetioniini.

IIM tüüpi restriktaasid (nt DpnI) tunnevad ära ja lõikavad metüleeritud DNA-d.

IIS tüüpi restriktaasid (nt FokI) lõikavad DNA-d kindla nukleotiidse järjestuse kauguselt oma äratundmisjärjestusest, mis on asümmeetriline ja mittepalindroomne. Need ensüümid võivad funktsioneerida dimeeridena.

IIT tüüpi restriktaasid (nt Bpu10I ja BslI) koosnevad kahest erinevast allüksusest. Mõned selle alamklassi ensüümid seonduvad palindroomse järjestusega, teised asümmeetrilise järjestusega.

III tüüp

III tüüpi restriktaasidel (nt EcoP15) on kaks erinevat mittepalindroomset äratundmisjärjestust, mis on vastassuunalised. Ensüüm lõikab DNA-ahela läbi 20–30 aluspaari kauguselt seondumisalast. Nendel ensüümidel on mitu allüksust, need täidavad nii metüleerimise kui restriktsiooni ülesannet ning need vajavad S-adenosüülmetioniini ja ATP-d. Selliseid restriktaase kasutavad prokarüoodid selleks, et kaitsta end sissetungiva võõra DNA eest. III tüüpi restriktaasid on hetero-oligomeersed multifunktsionaalsed valgud, mis koosnevad kahest allüksusest (Res ja Mod). Mod-allüksus tunneb ära spetsiifilise DNA järjestuse ja on DNA modifitseerimiseks vajalik metüültransferaas. Res on vajalik restriktsiooniks, kuid iseseisvalt pole see aktiivne. III tüüpi restriktaasidel on 5–6 aluspaari pikkused asümmeetrilised äratundmisjärjestused ning need lõikavad DNA-ahela läbi 25–27 aluspaari kauguselt pärisuunas, jättes vabaks lühikese üheahelalise üleulatuva 5’ otsa. Selleks, et ensüüm lõikaks, on vaja kaht vastupidise suunaga metüleerimata äratundmisjärjestust. III tüüpi ensüümid metüleerivad adenosüüljäägi N-6-positsioonil ühe DNA-ahela, seega on värskelt replitseeritud DNA-l vaid üks metüleeritud ahel, kuid see on piisav, et kaitsta seda uue restriktsiooni eest.

Tehislikud restriktaasid

Tehislikke restriktaase valmistatakse, liites looduslikke või tehislikke DNA seondumisdomeene nukleaasdomeenidega (selleks on sageli IIS tüüpi restriktaasi FokI-i restriktsioonidomeen). Sünteetilised restriktaasid suudavad ära tunda suuri saite (kuni 36 aluspaari) ja neid võib panna seonduma mis tahes DNA-järjestusega. Tsinksõrmnukleaasid on geenitehnoloogias enim kasutatavad tehislikud restriktaasid.

Näited

Näiteid restriktaasidest:

EnsüümAllikasSpetsiifiline järjestusLõige
EcoRIEscherichia coli
5'GAATTC
3'CTTAAG
5'---G     AATTC---3'
3'---CTTAA     G---5'
EcoRIIEscherichia coli
5'CCWGG
3'GGWCC
5'---     CCWGG---3'
3'---GGWCC     ---5'
BamHIBacillus amyloliquefaciens
5'GGATCC
3'CCTAGG
5'---G     GATCC---3'
3'---CCTAG     G---5'
HindIIIHaemophilus influenzae
5'AAGCTT
3'TTCGAA
5'---A     AGCTT---3'
3'---TTCGA     A---5'
TaqIThermus aquaticus
5'TCGA
3'AGCT
5'---T   CGA---3'
3'---AGC   T---5'
NotINocardia otitidis
5'GCGGCCGC
3'CGCCGGCG
5'---GC   GGCCGC---3'
3'---CGCCGG   CG---5'
HinfIHaemophilus influenzae
5'GANTCA
3'CTNAGT
5'---G   ANTC---3'
3'---CTNA   G---5'
Sau3AStaphylococcus aureus
5'GATC
3'CTAG
5'---     GATC---3'
3'---CTAG     ---5'
PvuII*Proteus vulgaris
5'CAGCTG
3'GTCGAC
5'---CAG  CTG---3'
3'---GTC  GAC---5'
SmaI*Serratia marcescens
5'CCCGGG
3'GGGCCC
5'---CCC  GGG---3'
3'---GGG  CCC---5'
HaeIII*Haemophilus aegyptius
5'GGCC
3'CCGG
5'---GG  CC---3'
3'---CC  GG---5'
HgaIHaemophilus gallinarum
5'GACGC
3'CTGCG
5'---NN  NN---3'
3'---NN  NN---5'
AluI*Arthrobacter luteus
5'AGCT
3'TCGA
5'---AG  CT---3'
3'---TC  GA---5'
EcoRV*Escherichia coli
5'GATATC
3'CTATAG
5'---GAT  ATC---3'
3'---CTA  TAG---5'
EcoP15IEscherichia coli
5'CAGCAGN25NN
3'GTCGTCN25NN
5'---CAGCAGN25NN   ---3'
3'---GTCGTCN25   NN---5'
KpnIKlebsiella pneumoniae
5'GGTACC
3'CCATGG
5'---GGTAC  C---3'
3'---C  CATGG---5'
PstIProvidencia stuartii
5'CTGCAG
3'GACGTC
5'---CTGCA  G---3'
3'---G  ACGTC---5'
SacIStreptomyces achromogenes
5'GAGCTC
3'CTCGAG
5'---GAGCT  C---3'
3'---C  TCGAG---5'
SalIStreptomyces albus
5'GTCGAC
3'CAGCTG
5'---G  TCGAC---3'
3'---CAGCT  G---5'
ScaIStreptomyces caespitosus
5'AGTACT
3'TCATGA
5'---AGT  ACT---3'
3'---TCA  TGA---5'
SpeISphaerotilus natans
5'ACTAGT
3'TGATCA
5'---A  CTAGT---3'
3'---TGATC  A---5'
SphIStreptomyces phaeochromogenes
5'GCATGC
3'CGTACG
5'---GCATG  C---3'
3'---C  GTACG---5'
StuIStreptomyces tubercidicus
5'AGGCCT
3'TCCGGA
5'---AGG  CCT---3'
3'---TCC  GGA---5'
XbaIXanthomonas badrii
5'TCTAGA
3'AGATCT
5'---T  CTAGA---3'
3'---AGATC  T---5'

Tähistused:

* = tömp ots
N = C või G või T või A
W = A või T

teisipäev, 23. detsember 2025

Närvirakk

Neuron ehk närvirakk ehk neurotsüüt (kreekakeelsest sõnast νεῦρον neũron) on enamikul loomadel närvisüsteemi funktsionaalne üksus.

Närvikoe rakkudel on mitmeid ülesandeid, nad toodavad neurohormoone ja võtavad vastu, muundavad ja kannavad üle elektrilisi signaale, mida nimetatakse närviimpulssideks.

Närvirakkude võrgustikku ja selle uuenemist, aga ka patoloogilisi seisundeid reguleerib suuresti neurohumoraalne regulatsioon.

Närvirakud hakkavad organismis elama ja arenema looteeasembrüogeneesis lootelehe välise kihi ektodermaalset päritolu rakkudest – neuroblastidest. Erinevalt paljudest teistest keharakkudest närvirakud pärast diferentseerumist oma elu jooksul rohkem ei jagune.

Tüüpilise neuroni ehk närviraku ehitus
Neuron-no labels.png
Rakukeha
(soom)

I gal närvirakul on tuuma sisaldav rakukeha ehk perikaarüondendriitideks kutsutavad lühikesed jätked, mis kannavad elektrilisi signaale rakukeha suunas, ja akson – pikk jätke, mis juhib signaale läbi sünapsi närvirakust välja.

Närviraku anatoomia

Praegu kehtivas inimese anatoomia standardis Terminologia Anatomicas kuulub neuron närvisüsteemi.

Närviraku ehitus

Närviraku ehitus
  1. Karedapinnaline endoplasmaatiline retiikulum
  2. polüribosoom
  3. ribosoom
  4. Golgi kompleks
  5. rakutuum
  6. nukleool
  7. rakumembraan
  8. mikrotuubul
  9. mitokonder
  10. siledapinnaline endoplasmaatiline retiikulum
  11. aksonikoonus (inglise keeles axon hillock)
  12. Schwanni raku tuum
  13. sünaps (aksonsomaatiline)
  14. sünapsid (aksondendriidiline)
  15. dendriit
  16. akson
  17. neurotransmitter sünapsipilus
  18. retseptor
  19. sünaps
  20. aktiinifilamendid
  21. Schwanni raku müeliintupp
  22. Ranvier' kitsend (ingl. k. node of Ranvier)
  23. Presünaptiline terminal
  24. Sünaptilised vesiikulid
  25. Sünaps (aksonaksoniline)
  26. Sünapsipilu (ingl. k. synaptic cleft)

Närviraku membraan

Närviraku membraanid on justkui peaaju 'suhtlusvõrgustikud' (ingl communication centers), kuna läbi nende närvirakud suhtlevad, lisaks kontrollivad membraanid toitainete sisenemise ja jääkainete väljutamise protsesse.

Närviraku membraanides mängivad olulist rolli kaks molekulide rühma: lipiidid ja valgud. Lipiidide fraktsioon koosneb peamiselt fosfolipiididestglükolipiididest ja kolesteroolist.

Membraanivalgud aga moodustavad molekulaarseid üksusi, mis talitlevad membraaniretseptorite (näiteks opioidretseptorid), -kanalite ja ensüümidena.

Närvirakkude klassifikatsioon

Närvirakke võib eristada mitmete tunnuste alusel, sealhulgas geeni ekspressiooni, morfoloogia, neurotransmitterite profiili, membraani biofüüsikaliste omaduste, erutuvuse ja muude tunnuste põhjal.

Morfoloogiline klassifikatsioon

Närvirakud jagunevad väga erinevateks rühmadeks. Jätkete olemasolu ja nende koguse järgi liigitatakse närvirakud:

Signaalitöötlus

  • Aferentsed neuronid – vahendavad informatsiooni väliskeskkonnast ja organitest kesknärvisüsteemis. Vahel nimetatakse ka sensoorseteks neuroniteks.
  • Interneuronid – ühendavad närvirakke kesknärvisüsteemis. Siia kuuluvad kõik rakud mis ei ole aferentsed ega eferentsed neuronid.
  • Eferentsed neuronid – vahendavad informatsiooni närvisüsteemist efektorrakkudele (lihased). Vahel nimetatakse ka motoorseteks neuroniteks.

Neurotransmitterite kasutus

Närvirakke võib eristada kasutatava neurotransmitteri ehk neurovirgatsaine alusel 

  • Glutamatergilised neuronid – närvirakud, mis kasutavad erutusvirgatsainet glutamaati.
  • GABAergilised neuronid – närvirakud, mis kasutavad pidurdusvirgatsainet GABA (gamma-aminovõihape).
  • Kolinergilised neuronid – närvirakud, mis kasutavad neurovirgatsainena atsetüülkoliini. Näiteks alfamotoneuronid, mis kontrollivad lihasrakkude tegevust, on kolinergilised neuronid.
  • Dopaminergilised neuronid – närvirakud, mis kasutavad neurotransmitterina dopamiini. Näiteks mustaines (ladina k. Substantia nigra) paiknevad närvirakud, mis Parkinsoni tõve vältel degenereeruvad, on dopaminergilised neuronid.
  • Serotonergilised neuronid – närvirakud, mis kasutavad neurovirgatsainena serotoniini.
  • Peptidergilised neuronid – närvirakud, mis sünteesivad ning vabastavad neuropeptiide (näiteks neuropeptiid Yoksütotsiinoreksiin jne.).

Oluline on rõhutada, et üks närvirakk võib kasutada mitut neurotransmitterit/neuropeptiidi. Näiteks toitumiskäitumist reguleerivad hüpotalamuse neuropeptiid Y positiivsed neuronid vabastavad ka pidurdusvirgatsainet GABA.

Närvi-tüvirakud

Erinevalt enamikust rakkudest närvirakud ei jagune. Närvirakke vahetavad välja närvi-tüvirakud, mis liiguvad hipokampuse (hammaskääru) ja haistmissibula kaudu peajju ja mis valmistatakse seal ette uuteks närvirakkudeks.

Areng jätkub ka pärast (kuni kuu ja kauem) närvipesasse asumist ja järk-järgult ka organismi kasvades.

Katsed närvi-tüvirakkudega on näidanud, et need võivad teatud närvirakkude kahjustumise korral spetsialiseeruda ka neurogliia hulka liigitatud rakkudeks, näiteks astrotsüütideksoligodendrotsüütideksSchwanni rakkudeks jne.

Patoloogia

Inimestel seostatakse närvirakkudega mitmesuguseid patoloogilisi ja haiguslikke seisundeid. Parkinsoni tõve põhjustavad uurijate arvates peaaju erinevates piirkondades hävivad närvirakud.

Inimeste nakatumisel inimese herpesviirus 1-ga (HSV-1) säilivad viiruseosakesed närvirakkudes kogu elu. Viiruse aktiveerudes liiguvad herpesviiruse osakesed närvikiudu pidi nahale ja võivad põhjustada osadel inimestel huuleohatise teket.

neljapäev, 4. detsember 2025

Neuraalharja rakud

Neuraalharja rakud on lühiajalised multipotentsed rakud, mis on pärit neuroektodermist neuraalplaadi piirilt ja on omased selgroogsetele. Neuraalhari ulatub loote peast sabaotsani, osaledes erinevate kudede ja organite arengus. Neuraalharja rakkudest saab alguse suurem osa perifeersest närvisüsteemist ja mitmed muud rakutüübid, nagu kardiovaskulaarsüsteemi silelihasrakud, naha pigmendirakud ja osa sidekoest.

Pärast gastrulatsiooni moodustuvad neuraalplaadi ja mitteneuraalse ektodermi piiril neuraalharja rakud. Neurulatsiooni ajal lähenevad neuraalvao ääred ehk neuraalharjad teineteisele ja moodustavad neuraaltoru. Siis teevad neuraaltoru kohal asuvad neuraalharja rakud läbi muutuse epiteelsest mesenhüümseksdelamineerudes neuroepiteelist ja migreerudes rostrokaudaalselt, diferentseerudes hiljem erinevateks rakutüüpideks.

Neuraalharja arengu häired põhjustavad neurokristopaatiaid, näiteks frontonasaaldüsplaasiatWaardenburgi sündroomiDiGeorge'i sündroomipiebaldismi ja kaasasündinud südamedefekte.

Ajalugu

Neuraalharja kirjeldas esmakordselt Wilhelm His aastal 1868. Ta kasutas oma uurimiseks kanaembrüoid ja nimetas neuraalharja ganglioniharjaks, sest ta leidis, et see diferentseerub spinaalganglioniks. Tänu rakkude märgistamise tehnoloogia arengule said Weston ja Chibon 1960. aastal uuringutes märgistada rakutuuma radioaktiivsete isotoopidega, et jälgida rakkude migreerumist. Suurem edasiarendus oli Nicole Le Douarini vutitibu markeerimissüsteem aastal 1969. Tänu kimäärsetele loomadele, kellesse on viidud teise looma rakke, saavad teadlased eristada ühe looma neuraalharja rakke teise looma rakkudest, selline uurimismeetod on kasutusel praegugi.

Induktsioon

Et neuraalharja rakud migreeruksid ja areneksid vajalikeks rakkudeks, on kasutusel terve molekulaarne kaskaad. See geene reguleeriv süsteem hõlmab nelja komponenti.

Induktiivsed signaalid

Induktiivsed rakuvälised signaalmolekulid, mida sekreteeritakse külgnevast epidermisest ja mesodermist, nagu Wnt-d, BMP-d ja Fgf-id, eraldavad mitteneuraalse ektodermi (epidermise) neuraalse induktsiooni ajal neuraalplaadist.

Wnt-signaali osalemist neuraalharja induktsioonis on katseliselt tõestatud mitmete liikide puhul, kasutades eksperimente, mis seisnevad vastava funktsiooni sisse lülitamises ja kaotamises. Katsed näitavad, et slug-i (neuraalharjale omane geen) promootorpiirkonnas on koht, kuhu kinnituvad transkriptsioonifaktorid, mis osalevad Wnt-st sõltuvate sihtmärkgeenide aktivatsioonil. See viitab sellele, et Wnt-l on otsene roll neuraalharja diferentseerumises.

Arvatakse, et BMP roll neuraalharja moodustumisel on seotud neuraalplaadi induktsiooniga. BMP antagonistid, mis difuseeruvad ektodermist, moodustavad BMP aktiivsuse gradiendi. Neuraalhari areneb BMP mõõduka aktiivsusega alal, madala aktiivsusega aladel areneb neuraalplaat ja kõrge aktiivsusega aladel epidermis.

Fgf, mis pärineb paraksiaalsest mesodermist, võib olla üheks neuraalharja indutseerivaks signaaliks. On näidatud, et dominantsete-negatiivsete Fgf-retseptorite ekspressioon blokeerib neuraalharja induktsiooni, kui seda rekombineerida paraksiaalse mesodermiga. BMP, Wnt ja Fgf-i radade täpne mehhanism ei ole veel teada.

Neuraalplaadi ääre spetsifikaatorid

Signaalid, mis määratlevad neuraalplaadi ääre, tingivad hulga transkriptsioonifaktorite ekspresseerumise, mida nimetatakse neuraalplaadi ääre spetsifikaatoriteks. Nende seas on Zic-faktorid, Pax3/7, Dlx ja Msx1/2-, mis võivad vahendada Wnt, BMP ja Fgf-i mõju. Neid geene ekspresseeritakse neuraalplaadi ääre piirkonnas laialdaselt ja nad eelnevad tõelistele neuraalharjamarkeritele. Katsete

 tulemuste põhjal paigutatakse need transkriptsioonifaktorid arengu ajajoonel neuraalharja spetsifikaatoritest ettepoole. Näiteks kannuskonnadel on Msx1 vajalik, et ekspresseerida Slugi-, Snaili- ja FoxD3-nimelisi geene. Samuti on Pax3 vajalik FoxD3 ekspressiooniks hiireembrüotes.

Neuraalharja spetsifikaatorid

Neuraalplaadi ääre spetsifikaatoritele järgneb komplekt geene, kuhu kuuluvad Slug/Snail, FoxD3, Sox 10, Sox9, AP-2 ja c-Myc. Need geenid, niinimetatud neuraalharja spetsifikaatorid, aktiveeritakse arenevates neuraalharja rakkudes. Vähemalt kannuskonnadel on iga geen vajalik ja/või piisav teiste spetsifikaatorite ekspressiooniks, mis näitab laialdase ristregulatsiooni olemasolu.

 Lisaks rangelt reguleeritud neuraalharja spetsifikaatorite võrgustikule on veel kaks transkriptsioonifaktorit, Twist ja Id. Twisti (bHLH transkriptsioonifaktor) on tarvis neelukaare mesenhüümi diferentseerumiseks. Id on c-Myci märklauaks ja on tähtis neuraalharja tüvirakkude säilimiseks.

Neuraalharja efektorgeenid

Efektorgeenide ekspressioon tingib teatud neuraalharja rakkude omadused, nagu migreerumisvõime ja multipotentsuse. Kaks neuraalharja efektorit, Rho GTPaasid ja kadheriinid, osalevad delamineerimisel, mõjutades raku morfoloogiat ja adhesiivseid omadusi. Sox9 ja Sox10 reguleerivad neuraalharja diferentseerumist, aktiveerides paljusid rakutüübispetsiifilisi efektoreid, nagu Mitf, P0, Cx32, Tro ja cKit.

Rakkude alged

Neuraalharja rakud, mis pärinevad anterioorse-posterioorse telje eri kohtadest, arenevad erinevateks kudedeks. Neuraalhari jaguneb neljaks funktsionaalseks osaks: pea neuraalhari, kere neuraalhari, ristluupiirkonna neuraalhari ning kardiaalne neuraalhari.

Pea neuraalhari

Pea neuraalhari migreerub dorsolateraalselt, moodustades kraniofatsiaalse mesenhüümi, mis diferentseerub pea- ja näopiirkonna kõhredeks ja luudeks, kraniaalganglioniteksgliiaks ja sidekoeks. Need rakud paiknevad ka neelutaskutes, moodustades seal tüümusekeskkõrva luud ja hambaalgmete odontoblastid.

Kere neuraalhari

Kere neuraalharja rakud arenevad kahes suunas. Rakud, millest saavad pigmenti sünteesivad melanotsüüdid, migreeruvad dorsolateraalselt ektodermi ja jätkavad oma teed kõhu keskjooneni. Teine osa rakke migreerub ventrolateraalselt läbi sklerotoomide eesosa. Need neuraalharja rakud, mis jäävad sklerotoomidesse, moodustavad dorsaalsed spinaalganglionid, mis sisaldavad sensoorseid neuroneid. Rakud, mis liiguvad ventraalsemalt, moodustavad sümpaatilised ganglionidneerupealiste säsi ja aorti ümbritsevad närvikogumikud.

Ristluupiirkonna neuraalhari

Ristluupiirkonna neuraalharja rakud arenevad enteerse ja parasümpaatilise närvisüsteemi ganglioniteks. Kui neuraalharja rakkude migratsioon sellesse piirkonda on häirunud, ei toimi soolte peristaltika.

Kardiaalne neuraalhari

Kardiaalse neuraalharja rakud võivad areneda melanotsüütideks, neelukaarte neuroniteks, kõhredeks ja sidekoeks. Lisaks moodustuvad sellest neuraalharja osast südamearterite lihas- ja sidekude ja kopsutüve sept ning see on seotud ka tüümuse ja kilpnäärme arenguga.

Neuraalharja derivaadid

Mesoektoderm: odontoblastid, hambapapillkondrokraaniumhingetoru- ja kõrikõhreddermatokraanium (membraansed luud), madalamatel selgroogsetel seljauim ja kilpkonna kõhukilp, lõpusearterite ja -veenide peritsüüdid ja silelihased, silma- ja mälumislihaste kõõlused, pea ja kaela näärmete sidekude ning koljuõõne, näo ja kaela rasvkude.

Endokriinrakudkromafiinrakud neerupealiste säsis, kilpnäärme follikulaarrakud ja I/II-tüüpi gloomusrakud.

Perifeerne närvisüsteem: spinaalganglioni sensoorsed neuronid ja gliiarakudSchwanni rakud, mõned Merkeli rakudRohon-Beardi rakud ja kraniaalnärvide ganglionid (VII ja osaliselt V, IX ja X).

Soolestikenterokromafiinrakud.

Melanotsüüdid ja iirise pigmendirakud

esmaspäev, 1. detsember 2025

Neurulatsioon

Neurulatsioon on selgroogsete loomade 

embrüogeneesi varane staadium, mille käigus kujuneb neuraalplaat, mis volditakse neuraaltoruks. Neuraaltoru anterioorne (eesmine) osa kujuneb primaarse neurulatsiooni käigus ja posterioorne (tagumine) osa sekundaarse neurulatsiooni käigus. Lõplik neuraaltoru kujuneb nende kahe eraldi kujunenud osa ühinemise tulemusena.

Neurulatsioon toimub kõigil selgroogsetel sarnaselt.

Primaarne neurulatsioon

Primaarse neurulatsiooni käigus jaotuvad ektodermi rakud kolme eri osa vahel:

  1. seespool paiknev neuraaltoru, millest moodustuvad peaaju ja seljaaju;
  2. väljaspool paiknev naha epidermis;
  3. neuraaltoru ja epidermise vahel paiknevad neuraalharja rakud. Neuraalharja rakud migreeruvad neurulatsiooni lõppjärgus uutesse asukohtadesse, kus nad panevad aluse perifeersetele neuronitele ja gliiale, naha pigmendi rakkudele ning mitmetele teistele kudedele.

Primaarsel neurulatsioonil eristatakse 3 etappi, mis ajaliselt omavahel kattuvad:

  1. neuraalplaadi moodustamine;
  2. voltimine neuraalvao moodustamiseks;
  3. neuraalvao sulgemine neuraaltoruks.

Neuraalplaadi moodustumine

Neuraalplaat tekib ektodermist. Signaalid neurulatsiooni alustuseks tulevad ektodermi all paiknevalt mesodermilt. Need signaalid põhjustavad ektodermi rakkude pikenemise sambakujulisteks neuraalplaadi rakkudeks. Nende kuju muutumine eristab tulevase neuraalplaadi rakud ümbritsevatest rakkudest. Neuraalplaadi moodustumisse on kaasatud ligikaudu 50 protsenti ektodermist.

Neuraalplaadi kuju muutumine on seotud neuraalplaadi rakkude ja epidermise liikumisega. Epidermis avaldab külgedelt survet neuraalplaati moodustavale rakkude massile ja samaaegselt muutub neuraalplaat pikemaks eest-taha suunal. Kui kirjeldatud protsessid ei toimu korrektselt, siis ei pruugi hiljem aset leidev neuraaltoru sulgemine õnnestuda. Protsessid ei kulge normaalselt siis, kui on mutatsioonid geenides, mis kodeerivad protsessis osalevaid signaalmolekule.

Neuraalplaadi voltimine

Neuraalplaadi kesktelg seondub selle all oleva seljakeelikuga. Kesktelg moodustab liigendi, mis voltub ja moodustub neuraalvagu. Seljakeelik signaliseerib liigendi rakke muutuma lühemaks ja püramiidikujulisteks. Neuraalplaadi ja ülejäänud ektodermi seondumiskohas mõlemale poolele moodustuvad külgmised liigendikohad. Need on seondunud epidermaalse ektodermiga. Külgmisi liigendeid moodustavad rakud pikenevad ja muutuvad püramiidikujulisteks. Külgmiste liigendite rakkude kuju muutumine on seotud vastavalt mikrotuubulite ja 

mikrofilamentide pikenemise ja lühenemisega neis rakkudes. Mikrotuubulid osalevad rakkude pikkuse muutmises. Mikrofilamendid osalevad rakkude ühe otsa kokkutõmbamises, et need muutuksid püramiidikujulisteks.

Kana embrüo neuraalplaadi voltimises osaleb ka seda ümbritsev epidermaalne ektoderm. Epidermis liigub neuraalplaadi keskosa suunal, avaldades neuraalplaadi külgedele survet ja soodustades niimoodi neuraalplaadi voltimist.

Ümbritseva epidermise liikumine neuraalplaadi keskosa suunas ja viimase seondumine seljakeelikule võivad olla olulised selle jaoks, et neuraalplaat sopistuks just sissepoole embrüot ja mitte väljapoole. Eksperimentaalselt on näidatud, et kui eraldada embrüost neuraalplaadi osasid koos mesodermaalse seljakeelikuga, siis need neuraalplaadi tükid rulluvad seestpoolt väljapoole. Neuraalvallid tekivad epidermise poolt avaldatava surve ja neuraalplaadi voltumise tulemusena.

Neuraaltoru sulgemine

Neuraalvallid lähenevad teineteisele ja ühinevad loote kesktelje kohal. Mõne liigi puhul moodustub ühinemiskoha rakkudest neuraalhari, mille rakud liiguvad teistesse kohtadesse. Eri liikidel toimub migreerumine eri ajal. Lindude puhul migreeruvad neuraalharja rakud alles siis, kui neuraaltoru on selle koha pealt sulgunud. Imetajate puhul vahetavad peapoolsed neuraalharja rakud oma asukohta juba siis, kui neuraalvallid alles kerkivad. Seevastu sabapoolsed neuraalharja rakud migreeruvad alles siis, kui neuraaltoru on juba sulgunud.

Neuraaltoru ei sulgu täies pikkuses üheaegselt. See seaduspära kehtib just nende selgroogsete loomade puhul, kelle keha telge pikendatakse vahetult enne neurulatsiooni; see toimub niimoodi lindudel ja imetajatel. Amniootide puhul alustatakse pea piirkonnas neurulatsiooni varem kui saba piirkonnas. 24 tunni vanuses kana embrüos toimub peapoolses osas neurulatsioon, samal ajal sabapoolses osas toimub alles gastrulatsioon (neurulatsioonile eelnev embrüogeneesi staadium). Neuraaltoru peapoolset avatud otsa nimetatakse anterioorseks neuropooriks ja sabapoolset posterioorseks neuropooriks. Imetajate puhul alustatakse neuraaltoru sulgemist neuraalplaadi mitmes kohas korraga. Inimese puhul on kolm sulgemiskohta. Neuraaltoru eri kohtade sulgemata jäämisel tekivad erinevad neuraaltoru defektid. Inimese embrüo posterioorse neuropoori avatuks jäämine põhjustab defekti nimega spina bifida. Anterioorse neuropoori sulgemata jäämisel tekib surmaga lõppev defekt anentsefaalia. Viimase puhul jääb otsaju kontakti vesikestaga ja taandareneb. Neuraaltoru defekte esineb tuhande elussünni kohta üks juhtum.

Neuraaltoru moodustub algselt ektodermi kuuluva neuraalplaadi voltumisel kinniseks toruks. Kui toru on sulgunud, siis see eraldub ülejäänud ektodermist. Eraldumist võimaldab see, et neuraaltoru rakud hakkavad tootma senisest erinevat rakkude adhesiooni molekuli. Senimaani sünteesitud E-kaderiini ekspressioon peatatakse ja alustatakse N-kaderiini ja N-CAM'i sünteesi. Selle tulemusena neuraaltoru rakud ja epidermaalse ektodermi rakud ei seondu enam omavahel. On näidatud, et kui indutseerida epidermise rakud sünteesima N-kaderiini, siis neuraaltoru epidermisest ei eraldu ning seega ei saa sulguda.

Neuraaltoru sulgumise geneetilised ja keskkonnategurid

Inimese neuraaltoru sulgumist juhivad teatud geenid, näiteks Pax3Sonic hedgehog ja openbrain, ning keskkonnategurid. Keskkonnateguritest on olulised kolesterooli ja foolhappe sisaldus toidus. Hinnanguliselt on üle 50 protsendi neuraaltoru defektide juhtudest võimalik ära hoida foolhapet sisaldava toidulisandi manustamisega rasedusajal. Foolhappe ülesanne neuraaltoru sulgumisel ei ole täpselt teada. Eksperimentaalselt on näidatud, et vahetult enne neuraaltoru sulgumist on hiire embrüo neuraaltoru ülespoole jäävate rakkude pinnal foolhappe retseptorid. Enamikul naistest, kelle lapsel esineb neuraaltoru defekt, on antikeha foolhappe retseptori vastu. Seevastu naistel, kelle lastel neuraaltoru defekte ei ole, esineb neid antikehi väiksema sagedusega. On näidatud, et foolhappe retseptori suhtes mutantsetel hiirtel esineb kõrge sagedusega neuraaltoru defekte. Defektide sagedus vähenes aga oluliselt, kui hiirtele manustati tiinuse ajal foolhappe toidulisandit. Foolhappe defitsiit tundub olevat ainuke tegur, mis põhjustab defektset neuraaltoru sulgumist. Madala elatustasemega naistel sünnib sagedamini neuraaltoru defektidega lapsi kui keskmise ja kõrgema elatustasemega naistel. Selline statistika kehtib vaatamata sellele, et vaesemad emad manustavad foolhappe toidulisandeid. On leitud, et teatud aastaaegadel sünnib sagedamini neuraaltoru defektidega lapsi. Sellise nähtuse põhjused pole kindlalt teada, aga üks võimalik põhjus võib olla saastatud viljad. Maisil parasiteeriv seenhallitus toodab fumonisiini, mis takistab paljude lipiidide ja valkude, sealhulgas ka foolhappe retseptori toimimist. Sellist seenhallitust on leitud piirkondadest, kus esineb neuraaltoru defekte suhteliselt kõrge sagedusega. Hiirte puhul on fumonisiini kahjulikku mõju võimalik vähendada foolhappe toidulisandite kasutamisega.

Neuraaltoru sulgemine hiire lootel

Neuraaltoru suletakse kolmest kohast:

 1) tagaaju ja kaela piirkonna piiril 8. embrüonaalsel päeval. Neuraaltoru sulgemine jätkub eesmise otsa suunas tulevase aju piirkonnas. Sulgemisprotsess jätkub ka tagumise otsa suunas tulevase seljaaju piirkonnas;

 2) eesaju ja keskaju piiril 9. embrüonaalsel päeval; 

3) eesaju eesmise otsa piirkonnas. Neuraaltoru sulgub lõplikult 10. embrüonaalsel päeval.

Neuraaltoru sulgemine inimese lootel

Neuraalplaadi voltimine algab 17–18 päeva pärast munaraku viljastamist. Neuraaltoru sulgemine toimub kahes kohas: 1) rombaju piirkonnas 2) neuraalplaadi eesmises otsas. Sulgemine toimub keskaju piirkonnas juhul, kui lootel on väärareng, mida nimetatakse anentsefaaliaks. Neuraaltoru eesmine osa suletakse lõplikult 25. embrüonaalsel päeval. Tagumine ots suletakse 26. ja 28. embrüonaalse päeva vahel, sellega lõpeb primaarne neurulatsioon.

Sekundaarne neurulatsioon

Sekundaarses neurulatsioonis volditakse neuraalplaat piklikuks tihkeks rakkude massiks. See eristub selle ümber hõredamalt asetsevatest rakkudest ja epidermisest, mis katab embrüot pealtpoolt. Pikliku rakkude massi sees tekitatakse vedelike sissetungiga väiksed kambrikesed piki kesktelge. Kambrikeste paisumisel need ühendatakse ühtseks õõnsuseks. Sekundaarset neurulatsiooni on uuritud oluliselt vähem kui primaarset neurulatsiooni.

kolmapäev, 26. november 2025

Blastula

Blastula on organismi ontogeneesis viljastatud munaraku (sügoodilõigustumisel tekkinud blastomeeride ehk lõigustusrakkude kobar; lootelise arengu üks staadiumeid.

Blastulatsioon. Legend: 1 – moorula; 2 – blastula

Blastulale eelneb moorula- ja järgneb gastrulastaadium. Moorula arengut blastulaks nimetatakse blastulatsiooniks.