Otsing sellest blogist

UUS!!!

Dorsaalsus

Dorsaalsus  on selgmine, selja poole jääv paiknemine. Sõna "dorsaalne" kasutatakse  elundite  ja nende osade topograafilis-anatoom...

kolmapäev, 19. november 2025

Mülleri juha

Mülleri juha ehk paramesonefroni juha (ladina keeles ductus paramesnonephricus) on selgroogse emaslooma sisesuguelund. Mülleri juha on lootel esinev paariline juha, mis kasvab piki Wolffi juha allapoole ja lõpeb kuse-suguurkega.


isasloomal (sh mehel) rudimentaarne.

Inimesel

Tulevasel naisel arenevad paramesonefroni juhast munajuhaemakasemakakael, ja tupe ülaosa.

Ajaloolist

Paramesonefroni juha sai nime Saksa arstianatoomi ja ihtüoloogi ning herpetoloogi Johannes Peter Mülleri järgi (14. juuli 1801 – 28. aprill 1858), kes uuris paramesonefroni juha arengut (Bildungsgeschichte der Genitalien1830).

teisipäev, 18. november 2025

Wolffi juha

Esmasneerutoruke ehk eelneerujuha ehk Wolffi juha (ductys mesonephricusductus Wolffi) on selgroogse isaslooma sisesuguelund. Wolffi juha on looteeas esinev, eelneeru (pronephros) ja jämesoole lõpposa (cloaca) vaheline paariline juha. Isasel kasvavad Wolffi juhad piki Mülleri juha allapoole ja lõpevad kuse-suguurkega.

Emastel esineb rudimendina.

Inimesel

Tulevastel meestel arenevad neist hiljem munandimanus (epididymis), seemnejuha (ductus deferens) ja selle laiend (ampulla) ning seemnepõiekesed.

Ajaloolist

Eelneerujuha nimetati Saksa arsti Caspar Friedrich Wolffi (18. jaanuar 1735 – 22. veebruar 1794) järgi, keda peetakse ka embrüoloogia üheks rajajaks.

esmaspäev, 17. november 2025

Tsöloom

Tsöloom ehk teisene kehaõõs (ka teiskehaõõs) on vedelikuga täidetud kehaõõs, mis moodustub loote arengu käigus mesodermi (keskmise lootelehe) sisse.

Tsöloomi erijuhuks on pseudotsöloom, kus see on arenenud endodermi ja mesodermi vahele; esineb näiteks keriloomadel. Loomi, kellel tsöloom puudub, nimetatakse atsöloomseteks.

Loomariigis arenes tsöloom kolme lootelehega (triploblastsetel) organismidel, kuid hilisemas fülogeneesis see teatud harudel kadus. Enamasti on tsöloomi kadumine korrelatsioonis mingi organismi kehamõõtmete vähenemisega.

reede, 14. november 2025

Embrüogenees

Embrüogenees ehk organismi looteline areng on ontogeneesi esimene staadium. See algab munaraku viljastumisest ja lõpeb munast koorumisega (lindudel ja enamikul muudel loomadel), sünnimomendiga (imetajatel ja muudel elussünnitajatel loomadel) või idu moodustumisega seemnes (taimedel). Embrüogeneesi võib jaotada varaseks ja hiliseks embrüogeneesiks. Inimese puhul lõpeb varajane embrüogenees siis, kui embrüo on arenenud looteks.

Inimese embrüogenees

Eri liikide loodete omavaheline võrdlus näitab, et imetaja embrüo sarnaneb algselt kala lootega, seejärel kahepaikse ja roomaja omaga ning alles lõpuks omandab imetajale omased tunnused. Seega läbitakse ontogeneesi alguses (embrüogeneesis) liigi evolutsioonilise arengu ehk fülogeneesi etapid.

Viljastumine ja sügoot

Sperm viljastamas munarakku

Munarakk on asümmeetriline, tal on animaalne poolus (tulevane ektoderm ja mesoderm) ja vegetatiivne poolus (tulevane endoderm). Munarakk on kaetud teda kaitsvate kihtidega. Esimene kiht on vitelliinmembraan (imetajatel zona pellucida), mis on seotud munaraku rakumembraaniga ja koosneb glükoproteiinidest. Erinevates taksonites esinevad erinevad rakulised ja mitterakulised kihid, mis ümbritsevad vitelliinmembraani.

Viljastumine on isas- ja emasgenoomi konjugatsioon kahe gameedi liitumise tagajärjel. Tänu kahe gameedi liitumisele taastatakse keharakkudele omane diploidne kromosoomistik ning aktiveeritakse munarakk arenema. Loomadel toimub protsessi käigus spermatosoidi ühinemine munarakuga, mis viib embrüo arenema. Sõltuvalt loomaliigist võib viljastumine toimuda kas kehasiseselt või kehaväliselt. Viljastatud munarakku nimetatakse sügoodiks.

Lõigustumine ja moorula

Lõigustumine ja gastrulatsioon

Lõigustumine on loomade (sh ka inimese) viljastunud munaraku ehk sügoodi kiire mitootiline jagunemine, ilma et tütarrakud vahepeal kasvaksid. Lõigustumine lõpeb kobarloote ehk moorula moodustumisega. Lõigustumise eesmärgiks on organismi hulkraksuse taastamine ja rakutuuma-tsütoplasma suhte normaliseerumine. Kui keharakkude tuuma-tsütoplasma suhe on tavaliselt 1:10, siis spermil on see suhe 1:1, munaraku puhul aga kaldub tugevasti tsütoplasma kasuks, 1:1000 või veelgi rohkem. Lõigustumine on jagunemine ilma kasvamiseta, mis on vajalik tuuma-tsütoplasma suhte normaliseerimiseks väga tsütoplasmarikka munaraku baasil. Lõigustumisel moodustuvaid tütarrakke nimetatakse blastomeerideks. Lõigustumine võib olla sünkroonne või asünkroonne, st blastomeerid võivad jaguneda kas üheaegselt või teevad seda eri ajal. Enamikul loomarühmadel on lõigustumise algul sünkroonse lõigustumise periood, mis on mõõdetav 4–14 rakutsükliga ning läheb seejärel üle asünkroonseks perioodiks. Ainult imetajatel ei ole sünkroonset lõigustumist ja esimesed kaks blastomeeri alustavad kohe lõigustumist asünkroonselt. Intensiivne paljunemine, ajal nagu see viljastatud munaraku moorulaks kujunemine on, toimub nendesamade geenide abil, mis vähkkasvaja rakkude vohamist põhjustavad.

Lõigustumise tüübid

Lõigustumise tüüp sõltub rebu hulgast. Lõigustumine võib olla täielik ehk totaalne või osaline ehk partsiaalne.

  • Täielik – vähese või keskmise rebuhulgaga ootsüüdid.
    • Täielik lõigustumine jaguneb:
      • totaal-ekvaalne ehk isoletsitaalne (blastomeerid ühe suurusega),
      • totaal-adekvaalne ehk mesoletsitaalne (animaalse pooluse blastomeerid veidi väiksemad) lõigustumine (käsnadkeriloomad, mõned vähidsüstikkala ja imetajad),
      • totaal-inekvaalne: blastomeerid on märgatavalt erineva suurusega – mikromeerid ja makromeerid (kahepaiksedkopskalakammloomad).

Gastrulatsioon

Gastrulatsioon toimub siis, kui ühekihiline blastula voltub sissepoole, suureneb ja moodustub gastrula. Värvikood: ektoderm – sinine; endoderm – roheline; blastotsööl – kollane; arhenteron – lilla.

Gastrulatsiooni käigus paigutuvad lõigustumisel tekkinud rakud ümber oma õigetele kohtadele, pannakse paika mitmekihilise organismi kehaplaan ja toimub tüvirakkude determinatsioon ehk programmeerimine. Morfoloogiliselt iseloomustab gastrulatsiooni loote- ehk idulehtede moodustumine.

Lootelehti on kolm: ektoderm ehk välisleht, entoderm ehk siseleht ja mesoderm ehk keskleht. Hüdralaadsetel on vaid ekto- ja endoderm.

Gastrulatsioon toimub pärast lõigustumist ning blastula ja ürgjuti moodustumist. Gastrulatsioonile järgneb organogenees, mille käigus arenevad lootelehtedest elundid ehk organid.

Kõikidel loomaliikidel moodustuvad samadest lootelehtedest samad elundid ja elundkonnad. Need muutused toimuvad järk-järgult embrüonaalse induktsiooni alusel. Kuna rakud vahetavad informatsiooni teiste ümbritsevate rakkudega, siis ühtede rakkude diferentseerumine viib ka vastavalt teiste rakkude diferentseerumiseni. Näiteks närvitoru moodustumine mõjutab mesodermi teket. Viimane omakorda soodustab närvitoru arenemist kesknärvisüsteemiks (pea-ja seljaajuks). Seega määrab ühtede kudede või elundite teke teiste kudede ja elundite tekke.

Gastrulatsiooni molekulaarne mehhanism ja ajastus on organismiti varieeruv, kuid triploblastiliste organismide hulgas esinevad mõned üleüldised sarnasused:

  • muutused embrüo topoloogilises struktuuris: kerakujulisest lihtsalt ühendatud pinnalt keeruliselt ühendatud pinnaks,
  • rakkude diferentseerumine üheks kolmest tüübist (ento-, meso- või ektodermiks),
  • suur osa entodermaalseid rakke omab seedefunktsiooni.

Organogenees

Närvisüsteemi areng

Neuraalplaadi sulgumine neuraaltoruks

Närvisüsteem on esimene elundkond, mis hakkab arenema pärast gastrulatsiooni. Blastotsööli sisserullunud kordomesoderm indutseerib enda kohal ektodermis neuraalplaadi. Neuraalplaat süveneb esialgu neuraalvaoks ja sulgub seejärel neuraaltoruks. Närvitoru morfogeneesis on tähtis osa nii sisemistel (rakusisestel) kui ka välistel teguritel. Sisemisteks teguriteks, mis kujundavad närvitoru, on mikrotorukeste ja mikrofilamentide lokaalsed iseärasused. Esimeseks tõukeks närvivao kujunemisel on muutused ventraalsetes mediaansetes rakkudes, mis on kontaktis seljakeelikuga. Need rakud moodustavad närvivao mediaanse hinge (analoogia aknahingega). Sealsed rakud pikenevad esialgu mikrotorukeste paralleelsete kimpude koondumise abil ja seejärel omandavad nad kiilu kuju tipmiste rõngasjalt paiknevate mikrofilamentide kontraktsiooni tulemusel. Järgmine etapp närvitoru kujunemisel on lateraalsetes hingedes kiilukujuliste rakkude moodustumine. Kogu kesknärvisüsteemi edasine arenemine on seotud rakkude lokaalse vohamisega ja valikulise hukkumisega. Selle tulemusena moodustub närvitoru eesosas esialgu kolm ja seejärel viis ajupõiekest. Kolme ajupõiekese staadiumis on eristatavad eesaju (prosencephalon), keskaju (mesencephalon) ja rombaju (rhombencephalon). Eesaju jaguneb edaspidi kaheks: otsajuks (telencephalon) ja vaheajuks (diencephalon). Rombaju jaguneb omakorda tagaajuks (metencephalon) ja piklikajuks (myelencephalon s. medulla oblongata).

Neuraalhari

Neuraalplaadi piirkonnad, mis lähevad üle ektodermiks, on tulevase neuraalharja allikaks. Neuraalhari on selgroogsetel niivõrd tähtis, et teda nimetatakse neljandaks looteleheks. Neuraalharjast pärineb hulk rakutüüpe. Neuraalharja võib jagada neljaks piirkonnaks:

  1. Pea neuraalhari, mille rakkudest areneb kraniofatsiaalne mesenhüüm, mis annab pea- ja näopiirkonna kõhred, luud ja muu sidekoe. Need rakud võtavad osa neelutaskute seinast ja annavad alguse tüümusele, hamba odontoblastidele ja sisekõrva kõhrele.
  2. Kere neuraalhari, millest pärinevad pigmenti sünteesivad melanotsüüdid. Samuti arenevad nendest dorsaal- ja sümpaatilised ganglionid, neerupealise säsiosa ning närvikogumikud ümber aordi.
  3. Ristluu piirkonna neuraalhari, mille rakkudest genereeritakse soole parasümpaatilised ganglionid.
  4. Kardiaalne neuraalhari, mis paikneb pea ja kere neuraalharja vahel kana embrüos 1. kuni 3. somiidini ja moodustab suurte arterite lihaselise seina ja kopsutüve septumi.

Neuraalharja rakud rändavad oma kohtadele mööda dorsaalset ja ventraalset trajektoori. Dorsaalne tee läheb läbi somiitide anterioorse osa, mis on kindlaks tehtud mitmesuguste markeritega. Need rakud annavad sensoorsed ja sümpaatilised neuronid, neerupealise säsi ja Schwanni rakud.

Seede- ja hingamiselundite kujunemine

Endoderm moodustab seedetrakti epiteliaalse voodri. Sooltoru jaguneb kolmeks osaks: ees-, kesk- ja tagasooleks. Eessool areneb kõige kiiremini ja moodustab oma lateraalses osas neelu- ehk lõpustaskud, millest imetajatel on selgelt eristatavad neli ja lindudel viis paari. Esimesest paarist lõpustaskutest kujunevad kuulmetõrved, teine paar lõpustaskuid kasvab kinni, täitub lümfaatilise koega ja moodustab kurgumandlid. Kolmanda ja neljanda lõpustasku dorsaalsed osad arenevad tüümuseks ja ventraalsed osad neljaks kõrvalkilpnäärme sagaraks. Viimased liituvad kilpnäärmega, mille alge sopistub välja kolmanda ja neljanda neelutasku paari vahel. Eessoole tagaosast sopistub bronhiaaljätke, millest arenevad kopsud. Kesksool jääb lindudel ja imetajatel ühendusse rebukotiga. Maks areneb kesksoolest ühe jätke kujul ventraalselt ja pankreas kahe jätke kujul nii kõhtmisest kui ka selgmisest piirkonnast. Tagasoolest sopistub välja allantois ja lindudel veel kloakaal- ehk Fabriciuse paun. Viimane on lümfaatiline elund. Imetajatel on homoloogiline kude hajutatud piki jämesoole seinu. Suu- ja anaalpiirkonnas puutub ektoderm kokku endodermiga, millest arenevad vastavalt suu- ja anaalava. Hüdra näitel on leitud, et tegelikult jääb ekto- ja endodermi vahele ühekihiline eriline rakkude populatsioon, mis suuava avanemisel venituvad ilma ühegi raku purunemiseta. Suuavast tungib ektoderm dorsaalselt Rathke tasku näol vaheaju ja endodermi vahele ja sellest piirkonnast areneb hüpofüüsi eessagar.

Mesodermi liigestumine

Neurula staadiumis jaguneb mesoderm viieks regiooniks:

  1. Kordomesoderm, mis formeerib seljakeeliku ja see määrab kogu organismi anterioposterioorse telje.
  2. Somiitide dorsaalne mesoderm annab organismi seljapiirkonna mesodermaalsed koed.
  3. Vahelmine ehk intermediaarne mesoderm, millest areneb kuse- ja suguelundkond.
  4. Külgplaatide mesoderm, mis annab alguse südamele, veresoontele ja vererakkudele, kõhu- ja rinnaõõnsuste sisevoodrile ning jäsemete mesodermaalsetele komponentidele, v.a lihased.
  5. Pea mesoderm, millest arenevad näo sidekoed ja muskulatuur.

Paraksiaalne mesoderm segmenteerub somiitideks. Somiit jaguneb edasises arenemises kolmeks osaks: selgmiseks dermatoomiks ja kõhtmisteks sklerotoomiks ja müotoomiks. Dermatoomist areneb pärisnahk, sklerotoomist aksiaaltoes ja müotoomist seljalihased. Vahelmisest mesodermist arenevad neerude üksikud põlvkonnad. Inimesel 22.-st ja hiirel kaheksandast arengupäevast pärast viljastumist areneb esimeste somiitide kõrval vahelmisest mesodermist pronefrose juha, millest imetajatel kujunevad umbsed pronefrose torukesed. Alamatel selgroogsetel avanevad pronefrose torukesed tsöloomi. Nende läheduses tsöloomi seinas areneb tihe veresoonevõrgustik kompaktseks päsmaks. Nendest veresoontest surutakse välja vereplasma ilma valkudeta ja pronefrose torukestes imendub enamik vereplasmat tagasi. Lämmastiku ainevahetuse lõpp-produktid, üleliigsed soolad ja vesi väljutatakse pronefrose juha kaudu. Pronefrose juha jaguneb posterioorselt kaheks: mesonefrose ehk Wolffi juhaks ja paramesonefrose ehk Mülleri juhaks. Mesonefrose torukesed paiknevad üksikutes segmentides sümmeetriliselt ja on seotud individuaalsete veresoonte päsmakestega. Isastel loomadel säilib osa mesonefrose torukestest ja moodustavad munandi somaatilise karkassi, munandimanuse, Wolffi juhast kujuneb seemnejuha. Emastel mesonefrose torukesed ja Wolffi juha taandarenevad ning Mülleri juhast arenevad munajuhad ja emakas. Amniootide püsineer on metanefros, mis areneb mesonefrosest kaudaalsemalt. Wolffi juhast sopistub kusejuha pung, mis hargneb tugevasti mesodermis (“ureeter-puu”) ja indutseerib seal neerutorukeste morfogeneesi. Neerutorukesed lõpevad umbsete kihnudena, mis ümbritsevad veresoonte päsmakesi ja koos moodustavad neerukehakesed. Kusejuha pungast areneb neeruvaagen. Kogu metanefrose arengus on tähtis koht neuraalharja rakkudel ja adhesioonimolekulidest sündekaanil.

neljapäev, 13. november 2025

Baeri seadused

Baeri seadused ehk Baeri reeglid on organismide arengu üldised seaduspärad, mis sõnastati baltisaksa loodusteadlase Karl Ernst von Baeri poolt aastal 1828:

  1. embrüonaalse arengu jooksul moodustuvad esialgu üldised, suurele loomagrupile ühised ja samaaegselt embrüonaalse ehituse poolest lihtsad morfoloogilised tunnused; edasise arengu käigus jätkub esmaste algmete diferentseerumine, ühtlasi kujunevad nõnda järk-järgult välja vastava loomagrupi alagruppide eritunnused;
  2. embrüonaalse arengu jooksul tekivad embrüol nende taksonoomiliste grupeeringute konkreetsed tunnused, millesse ta kuulub; embrüo ei läbi arenguteel teiste taksonoomiliste vormide seisundeid;
  3. kõrgemate loomade embrüod ei sarnane arengu jooksul teiste madalamate täiskasvanud loomadega, vaid hoopis nende loodetega.

kolmapäev, 12. november 2025

Biogeneetiline reegel

Biogeneetiline reegel ehk rekapitulatsiooni hüpotees ehk rekapitulatsiooniteooria on selgroogsete organismide lootelise arengu seaduspärasus, mille kohaselt ontogeneesi alguses (embrüogeneesis) läbitakse liigi fülogeneetiliste eellaste embrüonaalse arengu etappe.

Lühisõnastuses – ontogenees on fülogeneesi (lühike ja kiire) rekapitulatsioon.

Reegli sõnastas 1866. aastal Ernst Haeckel. Ent Stephen Jay Gould on (raamatus Ontogeny and Phylogeny, 1977) Haeckeli formuleeringut kritiseerinud ning näidanud, et tegu on pealiskaudse kirjeldusega sügavamast seaduspärast, mida kirjeldavad Baeri seadused.

teisipäev, 11. november 2025

Ontogenees

Ontogenees ehk isendiareng ehk isendiarenemine ehk individuaalne areng ehk indiviidiareng on üksiku organismi areng organismi tekkimisest (viljastunud munarakust või partenogeneesi korral viljastamata munarakust) kuni küpsuseni või teise kontseptsiooni järgi loomuliku surmani.

Inimese embrüogenees

Ontogeneesi alusprotsessid on diferentseerumine ja morfogenees.

Ontogeneesi uurib arengubioloogia.

Ontogenees ja fülogenees

Varem arvati, et organismi areng peegeldab täpselt liigi evolutsiooni (

rekapitulatsiooniteooria). Kuigi see päris nii ei ole, on ontogeneesi ja fülogeneesi vahel palju seoseid, mida evolutsiooniteooria ka seletab.

Inimese ontogenees

Inimese ontogenees jaotub kaheks etapiks:

1) sünnieelseks ehk embrüonaalseks ehk üsasiseseks (prenataalseks) ja

2) sünnijärgseks ehk postembrüonaalseks ehk üsaväliseks (postnataalseks) arenguperioodiks.

Üsasiseseks nimetatakse arenguperioodi naise suguraku viljastamist (raseduse algus) kuni lapse sündimiseni. Üsaväline periood vältab sünnist surmani. Üsasisene periood vältab ema organismis ligikaudu 40 nädalat (10 lunaarkuud): esimesed päevad munajuhas, ülejäänud aja emakas. Sel perioodil arenevad ka nn provisoorsed elundid, mis on vajalikud loote arenemiseks.

Näide

esmaspäev, 10. november 2025

Fülogenees

Fülogenees ehk põlvnemiskäik on mingi organismide rühma evolutsiooniline päritolu. Fülogeneesi uurivat teadusharu nimetatakse fülogeeniaks. Selle tulemusi kasutab fülogeneetiline süstemaatika.

Taksonite fülogeneetilised tüübid: monofüleetiline rühm (kollane), polüfüleetiline rühm (punane) ja parafüleetiline rühm (sinine)

reede, 7. november 2025

Geenivektor

Geenivektor ehk geenisiirdaja on geeniteraapias kasutatav rekombinantse DNA või RNA konstrukt, milles siiratav pärilikkusaine on ühendatud elementidega, mis võimaldab sellel rakku siseneda, seal integreeruda ja avalduda.
Geeniteraapias kasutatakse viiruslikke ja mitteviiruslikke vektoreid. Vektori valik sõltub sihtmärkrakust ja terapeutilise geeni omadustest, näiteks selle suurusest ja avaldumise ajast.

Viirusvektorid

Viiruslikud vektorid põhinevad viirustele omasel käitumisel tungida organismi rakku, seal paljuneda ning sisestada oma pärilikkusaine peremeesorganismi genoomi.
Viirusvektori konstrueerimisel asendatakse enamik viiruse pärilikkusainet terapeutilise geeniga, kuid seejuures säilitatakse viiruse nukleiinhapete osa, mis on vajalik rakule kinnitumise ja rakku sisenemise tagamiseks.
Kuigi viirusvektorid on geeni viimisel rakku efektiivsemad kui mitteviiruslikud vektorid, võib nende kasutamisega kaasneda viiruslik infektsioon. Peamised geeniteraapias kasutatavad viirused on retroviirusadenoviirusadenoassotsieerunud viirusalfaviirusherpesviirus ja vaktsiinia viirus. 2012. aasta seisuga oli inimese geeniteraapia näidetest umbes 70% sellised, kus DNA viimiseks kudedesse on kasutatud viirusvektoreid.

Viirusvektorite konstrueerimine

Viirusvektori konstrueerimisel arvestatakse, et ideaalne viiruslik vektor hõlmab kõiki viiruse infektsioonitsüklile omaseid tunnuseid, kuid samas tuleb vältida haigust põhjustavate geenide avaldumist sihtmärkrakus. Selleks asendatakse enamik viiruse pärilikkusaine terapeutilise geeniga, kuid seejuures säilitatakse viiruse nukleiinhapete osa, mis on vajalikud rakule kinnitumiseks, rakku sisenemise tagamiseks, pärilikkusaine pakkimiseks kapsiidi ning DNA terapeutilise geeni lülitamiseks raku genoomi. Neid geene nimetatakse cis-elementideks. Kustutatud viiruse geenid, mis on seotud replikatsioonikapsiidi- ja membraanivalkudega, paiknevad eespool nimetatud geenidest eraldi konstruktis, näiteks plasmiidis. Neid nimetatakse trans-elementideks. Seejärel viiakse vektorgenoom ja trans-elemendid pakkimisrakku ning seal moodustuvad rekombinantsed viirused, mis on võimelised terapeutiliset geeni rakku viima ja seda genoomi lülitama.
Vahel konstrueeritakse geeniteraapia tarbeks ka pseudotüpeeritud viirusi, mis suurendavad või vähendavad sihtmärkrakkude ampluaad. Näiteks populaarseim viirus, mida vektorite tarbeks kasutatakse, on Retroviridae perekonda kuuluv Simia immuunpuudulikkuse viirus, mis on kaetud vesikulaarset stomatiiti põhjustava viiruse G-valkudega.

Retroviirus

Retroviirus kasutab nukleiinhappena RNA-d ning kasutades oma nakatamistsüklis pöörtranskriptaasi, kodeerib see DNA-d. Viiruse kodeeritud DNA seostub stabiilselt sihtmärkraku geneetilise struktuuriga viiruse kodeeritud ligaasi vahendusel. Retroviirus on võimeline nakatama ainult jagunevaid rakke, seega terapeutilise geeni omadused kantakse edasi rakuliini pidi. Kuna retroviirus siseneb peremeesraku geenidesse suvaliselt, suurendab see vähitekke riski. Maksimaalne kogus pärilikkusainet, mida viirusse laadida võib, on 8000 aluspaari.

Retroviirusel põhinevat vektorit ja ühtlasi ka geeniteraapiat rakendati inimese puhul esmakordselt 1990. aastal ADA-SCID ehk adenosiini deaminaasi puudusest põhjustatud ägedat immuunpuudulikkust põdeval patsiendil. Adenosiini deaminaasi defektsuse korral koguneb T-lümfotsüütidesse desoksüadenosiin, mis on T-rakkudele toksiline, seega organismil ei teki immuunvastust ning haiged surevad lapseeas. Inimese ADA-geen klooniti retroviirusel põhinevasse vektorisse ning viidi haige lapse valgeverelibledesse, mis olid organismist eelnevalt eraldatud. Pärast ADA-geeni avaldumise kontrollimist viidi leukotsüüdid organismi tagasi.

2000. aastal rakendati 15 poisslapsel geeniteraapiat X-liitelise SCID vastu. Nende vereloome tüvirakkudesse viidi IL2Rye-geen. Selline ravimikatsetus osutus edukaks, kuid kahe aasta pärast haigestusid ravitutest kaks leukeemiasse. Neil kahel lapsel toimus seoses retroviiruse integratsiooniga translokatsioon 7. ja 11. kromosoomi vahel. Retroviiruse vektor oli koos terapeutilise geeniga integreerunud LMO2-geeni, mis kontrollib rakkude jagunemist, stimuleerides samuti selle avaldumist. Sellise kaasefekti tõttu keelustati vahepeal USA-s ning mitmes Euroopa riigis retroviirusel põhinev geeniteraapia.

Viirusvektori seostumine rakumembraaniga ja pärilikkusaine toimetamine rakku

Adenoviirus

Adenoviirusvektorite eelis on see, et viiruse DNA, millest haigust tekitav osa on osaliselt kustutatud, suudab mahutada suhteliselt pikka DNA osa ehk umbes 7500 aluspaari. Samuti viivad nad rakkudesse palju viiruse osakesi ja mõjutavad nii puhkavaid kui jagunevaid rakke. Sellegipoolest toodavad nad mitmeid viirusele omaseid valke, mis võivad põhjustada immuunreaktsiooni, mis nii vektorid kui ka nende mõjutatud rakud kiiresti elimineerib. Adenoviirust kasutades ei õnnestu manustamise kordamine, kui esmakordsel vektori manustamisel kaasnes immuunsüsteemi muutus, mis surus maha esmase vastuse adenoviiruse kattevalkude vastu. Seega on adenoviiruste kasutamine geenivektorina ohtlik, kuna see võib patsiendi organismis põhjustada väga tugeva immuunvastuse. Näiteks patsient, kes kannatas ornitiini transkarboksülaasi defektsuse all ja kelle geeniteraapilisel ravil kasutati adenoviiruse vektorit, suri organismi ägeda immuunvastuse tõttu.

Adenoviiruste kaksikahelalist DNA-d ei lülitata sihtmärkraku genoomi, vaid see jääb rakutuumas eraldiseisvaks. Seega terapeutiline geen ei jagune rakkude paljunemisel.

Adenoviirusel arvatakse olevat suur potentsiaal vektorina vähivastases geeniteraapias. 2003. aastal tuli Hiinas turule ravim Gendicine, milles kasutatav p53 tuumorsupressorgeen ravib lamerakulist kartsinoomi.

Adenoassotsieerunud viirus

Adenoassotsieerunud viiruste vektorid kasutavad nukleiinhappena üheahelalist DNA-d, nakatades efektiivselt jagunevaid ja mittejagunevaid rakke. Viiruste vektorid integreeruvad genoomi arvatavasti juhuslikult, kuigi mõned originaalviirused integreeruvad peamiselt 19. kromosoomi teatud piirkonnaga. Seepärast on nende puhul samasugune oht onkogeeni aktiveerimiseks nagu retroviirusvektorite puhul. Adenoassotsieerunud viirusega on võimalik transportida pärilikkusainet suurusega kuni 4500 aluspaari. Seda vektorit on kasutatud peamiselt lihas- ja silmaprobleemide korral.

Alfaviirus

Alfaviirus kasutab nukleiinhappena RNA-d, nakatades jagunevaid ja mittejagunevaid rakke. Maksimaalne kogus pärislikkusainet, mida selle vektoriga transportida saab, on 7500 aluspaari. Alfaviiruste kasutamine geeniteraapias on piiratud, kuna nad suudavad seonduda väheste rakkude retseptoritega ja nende ekspressioon on lühike.

Herpes simplex'i viirus

Herpes simplex'i viirus kasutab nukleiinhappena üheahelalist DNA-d, nakatades nii jagunevaid kui ka mittejagunevaid rakke. Maksimaalne kogus pärilikkusainet, mida selle vektoriga transportida saab, on 30 000 aluspaari. Seda viirust on kasutatud vektorina glioomi, melanoomi ja munasarjavähiga patsientidel. Kuna herpesviirus on neurotroofiline, siis kasutatakse herpesviirusel põhinevaid vektoreid kõige enam terapeutilise geeni saatmiseks pea- ja seljaajju. Herpesviirus on väga transgeenne ning selle põhjal konstrueeritud vektorid võimaldavad pikka terapeutilise geeni püsimist organismis.

Vaktsiiniaviirus

Vaktsiiniaviirus kasutab nukleiinhappena kaheahelalist DNA-d. Maksimaalne kogus vaktsiiniaviirusega transporditavat pärislikkusainet on 25 000 aluspaari. Vaktsiiniaviirus ei integreeru sihtmärkraku genoomi, vaid replitseerub täielikult raku tsütoplasmas.

Mitteviiruslikud vektorid

Mitteviiruslike vektorite korral sisestatakse terapeutiline geen rakku füüsilisel või elektrokeemilisel teel. Võrreldes viiruslike vektoritega on mitteviiruslikud vektorid odavamad, neid on lihtsam toota ja need on vähem patogeensed. Lisaks võimaldavad mitteviiruslikud vektorid transportida suuremat kogust pärislikkusainet. Mitteviiruslike vektorite populaarsust pärsib nende väiksem efektiivsus võrreldes viirusvektoritega.

Füüsilised meetodid

Füüsiliste meetodite puhul rakumembraanid lõhutakse ja terapeutiline geen sisestatakse füüsiliselt sihtrakku. Peamised geeniteraapias kasutatavad füüsilised meetodid on geeni süstimine sihtrakku või veresoonde, ballistiline DNA, elektroporatsioonsonoporatsioonfotoporatsioonmagnetofektsioon ja 

hüdroporatsioon.

Geenide süstimine

Terapeutilise geeni süstimine üksikusse keharakku või veresoonde on ohutuim meetod geeni ülekandmiseks. Teisest küljest pärsib selle meetodi populaarsust väike efektiivsus. Organismi immuunsüsteem elimineerib katmata eksogeense geeni kiiresti. Näiteks eksgeense plasmiidi poolestusaeg hiire organismis on 10 minutit, mis pole geenide avaldumiseks reeglina piisav. Seda meetodit on enim kasutatud naha-, südame- ja maksaprobleemide korral.

Ballistiline DNA

Ballistilise DNA meetod põhineb kulla- või hõbedaosakestega kaetud DNA tulistamisel geenipüssiga kõrge rõhu all sihtmärkrakku. See meetod võeti kasutusele 1980-ndate keskel ning kasutati esialgu markergeeni transportimiseks taimekudedesse. Seda meetodit kasutatakse munasarjavähi puhul.

Elektroporatsioon

Elektroporatsiooni korral tõstavad elektroporaatorid raku plasmamembraani elektrijuhtivust. Elektriline impulss tekitab plasmamembraanis ajutisi poore, mille kaudu saab terapeutiline geen rakku siseneda. Seda meetodit kasutatakse eelkõige naha- ja lihaskudede korral. Elektroporatsiooni negatiivseteks külgedeks on liiga suurte koekahjustuste tekitamine ning samuti ei pääse elektroodidega, millega rakumembraan lõhutakse, paljudele siseelunditele juurde.

Sono- ja fotoporatsioon

Sonoporatsioon on mitteinvasiivne kohtspetsiifiline meetod, mis kasutab ultrahelilaineid, mis augustavad rakumembraani, et geen saaks rakku pääseda. Fotoporatsiooni korral kasutatakse rakumembraani augustamiseks laserimpulssi.

Magnetofektsioon

Magnetofektsiooni korral seostatakse terapeutiline geen magnetiseeruvate nanoosakestega, mis sisestatakse tugeva magnetvälja toimel rakku. Magnetofektsioon on organismile ohutu, kuid vastava meetodi kasutamisel tuleb geeniteraapiat pidevalt korrata, kuna terapeutiline geen ei integreeru raku genoomi.

Hüdroporatsioon

Hüdroporatsiooni kutsutakse ka hüdrodünaamiliseks geeniülekandeks. See meetod kasutab hüdrodünaamilist rõhku läbimaks rakumembraani. Suure DNA kontsentratsiooniga lahuse süstimisel rakku luuakse hüdrodünaamiline surve, mille tulemusena tekib rakumembraanil juurde poore, mis hõlbustavad geeni levikut organismis ja seekaudu geeni jõudmist sihtmärkrakku.

Keemilised meetodid

Keemilised meetodid terapeutilise geeni sihtmärkrakku transportimiseks jagunevad anorgaanilisteks, lipiidseteks, valgulisteks ja polümeerseteks kandjateks. Selliste kandjate ülesanne on seostuda rakumembraaniga ning kaitsta terapeutilist geeni raku kaitsemehhanismide eest.

Anorgaanilised kandjad

Terapeutilised geenid kaetakse anorgaaniliste nanoosakestega, näiteks kaltsiumfosfaadi, kulla või räniga, mis tõhustavad terapeutilise geeni jõudmist sihtmärkrakku, madaldades organismi kaitsereaktsioonide mõju. Näiteks kullaosakestega kaetud geen, mis infrapunakiirguse mõjul rakumembraani läbib, on organismile vähem toksiline kui lipopleksid. Samas pole anorgaanilised kandjad biolagunevad, seega nad kuhjuvad rakkudesse ja pärsivad nende funktsiooni.

Oligonukleotiidid

Oligonukleotiidide ülesandeks geeniteraapias on pärssida pärilikku haigust põhjustava geeni avaldumist. Selle saavutamiseks eksisteerib mitmeid mehhanisme. Üheks võimaluseks on vigase geeni antisenss-spetsiifilisuse kasutamine, mis inhibeerib selle ekspressiooni. Võimalik on ka siRNA-de seostumine vigasele mRNA-le, mis pärsib valgusünteesi. Lisaks eelnenutele on väljatöötamisel kaheahelalised oligodeoksünukleotiidid. Ideaalis seonduksid transkriptsioonifaktorid vigase geeni promootori asemel vastavatele oligonukleotiididele, mis vähendaks sihtmärkgeeni avaldumist.

Lipoplekssed ühendid

Lipopleksne ühend koosneb lipiidist, millesse on pakitud geen. Lipiidil on positiivselt laetud hüdrofiilne pea ja hüdrofoobne saba. Lipiidi positiivselt laetud peaosa seostub elektrostaatilise interaktsiooni kaudu negatiivselt laetud geeniga, moodustades lipoplekse ühendi. Kuna lipopleks on positiivselt laetud, seostub see rakumembraanil olevate negatiivselt laetud glükoproteiinide ja proteoglükaanidega ning siseneb rakku. Lipiidikiht geeni ümber kaitseb geeni raku kaitsemehhanismide eest, kuid lipiidikihi laeng vähendab kaitse kestvust.

Rakku sisenevad peptiidid

Rakku sisenevad peptiidid on väikesed, sisaldades alla 40 aminohappejäägi. Need peptiidid on enamasti pärit viirusvalkudelt, mis tungivad rakku, seostudes mitmete rakumembraanivalkudega. Lisades lipiidsetele kandjatele kindlaid aminohappelisi järjestusi, võib kandja seonduda spetsiifiliselt mõne teatud organelliga.

Polümeersed kandjad
Kitosaan

Kitosaan on lineaarne katioonne polüsahhariid, mis on eraldatud krabidest ja krevettidest. Selle biolaguneva polümeeri toimeks on seostumine foolhappega ning on kahjutu ka suurte kontsentratsioonide juures.

Dendrimeerid

Dendrimeerid on korrapärase hargnenud struktuuriga positiivse pinnalaenguga polümeerid, mis läbivad endotsütoosi teel hõlpsalt rakumembraani. Dendrimeer seostub geeniga oma positiivse pinnalaengu tõttu füsioloogilise pH juures. Dendrimeeride laialdasemat kasutamist pärsib nende liigne spetsiifilisus seostumaks rakumembraanidega ja toksilisus.

Želatiin

Želatiin on looduslik biolagunev polümeer, mida kasutatakse laialdaselt farmaatsia- ja meditsiinivaldkonnas. See ühend koosneb denatureerunud kollageenist, millel on unikaalne aminohappeline sisaldus. Positiivse laenguga želatiin saadakse etüleendiamiini sisestamisel želatiini karboksüülrühma. Želatiini kasutamine geenivektorina on inimesele ohutu.

Hüaluroonhape

Hüaluroonhape on looduslik biolagunev polümeer, mis suudab sünteetilistest polümeeridest edukamalt terapeutilist geeni läbi rakumembraani transportida. Hüaluroonhapet kasutatakse sarv- ja võrkkestaprobleemide korral.

neljapäev, 6. november 2025

Restriktaasid

Restriktaasid (sait-spetsiifilised endonukleaasid) on ensüümid, mis lõikavad DNA-ahelat kindlate nukleotiidsete järjestuste juurest. Selliseid spetsiifilisi järjestusi nimetatakse restriktsioonisaitideks.

Restriktaase on leitud bakteritest ja arhedest, kus need kaitsevad rakku sissetungivate viiruste eest. Prokarüootides lõikavad restriktaasid vaid võõrast DNA-d, raku enda DNA-d kaitseb restriktaasi eest metülaasmetüleerides A ja C nukleotiidid. Sellist kaitsemehhanismi nimetatakse restriktsiooni-modifikatsiooni süsteemiks.

Praeguseks on põhjalikult uuritud üle 3000 restriktaasi ja neist ligikaudu 600 kasutatakse igapäevaselt laborites, et DNA-d modifitseerida ja manipuleerida.

Ajalugu

Esimene bakteritest isoleeritud restriktaas oli HindII. See eraldati 1970. aastal bakterist Haemophilus influenzae. Selle ja veel mitme restriktaasi avastamise eest anti 1978. aastal Nobeli füsioloogia- või meditsiiniauhind kolmele teadlasele: Daniel NathansWerner Arber ja Hamilton O. Smith. Nende avastus pani aluse rekombinantse DNA tehnoloogia arengule, millel on väga palju kasutusalasid, näiteks saab selle tehnoloogia abil kasutada E. coli baktereid kiireks ja suuremahuliseks insuliini tootmiseks.

Restriktsioonisait

Palindroomse ala järjestus on mõlemal ahelal sama, kui lugeda nukleotiide mõlemal ahelal samasuunaliselt (5’ otsast 3’ otsa).

Restriktaasid tunnevad ära teatud nukleotiidse järjestuse ja lõikavad läbi DNA kaksikheeliksi mõlemad ahelad. Restriktsioonisaidis on enamasti 4–8 nukleotiidi ja tihti on see palindroomne, mis tähendab, et nukleotiidide järjestus on mõlemat pidi lugedes sama. DNA-l on kaks palindroomse järjestuse võimalust. Peegelpalindroom (ingl mirror-like palindrome) on sarnane palindroomidega, mis esinevad keeles, näiteks "udu". DNA-järjestuses on peegelpalindroom näiteks GTAATG. Pöördkorduv palindroom (ingl inverted repeat palindrome) on samuti mõlemat pidi samasugune, kuid palindroom esineb komplementaarsetes DNA-ahelates, näiteks järjestuse GTATAC puhul, millele komplementaarne järjestus on CATATG. Pöördkorduvad palindroomid esinevad sagedamini ja omavad suuremat tähtsust kui peegelpalindroomid. Palindroomid võivad ahelates tekitada "volte", kus osa ahelast jääb U-kujuliselt üheahelaliseks.

EcoRI restriktaas jätab lõigates kleepuvad otsad:

EcoRI restriction enzyme recognition site.svg

SmaI restriktaas jätab lõigates tömbid otsad:

SmaI restriction enzyme recognition site.svg

Äratundmisjärjestus on restriktaasidel erinev, mistõttu tekivad lõigates eri pikkusega kleepuvad otsad. Need võivad asuda nii peaahelal kui komplementaarsel ahelal.

Restriktaase, mis tunnevad ära sama järjestuse, kuid lõikavad erinevatest kohtadest, nimetatakse neoskisomeerideks. Ensüüme, mis tunnevad ära sama järjestuse ja ka lõikavad samade nukleotiidide vahelt, nimetatakse isoskisomeerideks.

Tüübid

Restriktaasid jagatakse nelja gruppi (I, II, III ja IV tüüpi) nende struktuuri, vajaliku kofaktori, äratundmisjärjestuse ja restriktsioonisaidi järgi. Kõik restriktaasid tunnevad ära kindla järjestuse ja teevad endonukleolüütilise lõike sellisel viisil, et tekiksid kindla järjestusega 5’ ja 3’ otsad. Nende eristamistunnused on järgnevad:

  • I tüüpi ensüümide (EC 3.1.21.3) restriktsioonisait asub äratundmisjärjestusest eemal. Need vajavad funktsioneerimiseks nii ATP-d kui S-adenosüülmetioniini. On multifunktsionaalsed valgud, millel on nii restriktsiooni kui metülaasi (EC 2.1.1.72) ülesanded.
  • II tüüpi ensüümide (EC 3.1.21.4) restriktsioonisait asub äratundmisjärjestuse sees või selle lähedal. Enamik neist vajavad magneesiumi. Need on vaid restriktsioonifunktsiooniga metülaasist sõltumatud valgud.
  • III tüüpi ensüümide (EC 3.1.21.5) restriktsioonisait asub äratundmisjärjestuse lähedal. Need vajavad ATP-d (kuid ei hüdrolüüsi seda). S-adenosüülmetioniin stimuleerib reaktsiooni, kuid ei ole vajalik selle toimumiseks. Esineb osana suuremast valgust koos modifitseeriva metülaasiga (EC 2.1.1.72).
  • IV tüüpi ensüümid seonduvad modifitseeritud (näiteks metüleeritud, hüdroksümetüleeritud või glükosüül-hüdroksümetüleeritud) DNA-ga. Need on bakteri viimase järgu kaitseensüümid.

I tüüp

I tüüpi restriktaasid olid esimesed, mis avastati ja mille omadusi iseloomustati. Need isoleeriti E. coli bakterist. I tüüpi restriktaaside restriktsioonisait erineb ja on vähemalt 1000 aluspaari kaugusel nende äratundmisjärjestusest. Lõikamine järgneb DNA translokatsioonile, mis tähendab, et need ensüümid on ka molekulaarmootorid. Äratundmisjärjestus on asümmeetriline ja koosneb kahest osast: ühes 3–4 nukleotiidi, teises 4–5 nukleotiidi. Neid eraldab mittespetsiifiline 6–8 nukleotiidi pikkune vaheala. Sellised ensüümid on multifunktsionaalsed ning on sõltuvalt DNA metüleeritusest võimelised nii restriktsiooniks kui modifitseerimiseks. Täielikuks aktiivsuseks on neil vaja kofaktoreid S-adenosüülmetioniini, hüdrolüüsitud ATP-d ja magneesiumiioone (Mg2+). I tüüpi restriktaasidel on 3 allüksust: HsdRHsdM ja HsdS. HsdR on vajalik restriktsiooniks, HsdM on vajalik DNA metüleerimiseks ja HsdS on vajalik nii mõlemaks eelnevaks ülesandeks kui ka DNA-ga seondumiseks.

II tüüp

"Eco"RI restriktaasi struktuur (roheline ja sinine ala). Ensüüm seondub DNA kaksikheeliksi (pruun ala) külge. Ensüümi lõikamiskohale liitub kaks magneesiumi iooni (üks mõlemale monomeerile), mis tekitavad lünga DNA struktuuris

II tüüpi restriktaasid erinevad I tüüpi restriktaasidest mitmel moel. Need moodustavad homodimeere, mille äratundmisjärjestused on enamasti lahutamata palindroomid, mis on 4–8 nukleotiidi pikad. DNA-d lõikavad need sama koha pealt, kuhu seonduvad, ning ei vaja kofaktorina ATP-d ega S-adenosüülmetioniini, vaid ainult Mg2+ iooni. Selle rühma ensüüme kasutatakse enim ja need on teaduslaborites laialt levinud. 1990. aastatel ja 2000. aastate alguses leiti sellest klassist uusi ensüüme, mis ei vastanud täpselt eelpool mainitud tingimustele. Seetõttu loodi alamklassid, kuhu jaotada ensüüme vastavalt nende erinevustele rühma põhitüübist. Alamklassidele on lisatud järelliide.

IIB tüüpi restriktaasid (nt BcgI ja BplI) on multimeerid, mis tähendab, et need koosnevad rohkem kui ühest allüksusest. IIB tüüpi restriktaasid lõikavad ahela läbi mõlemalt poolt äratundmisjärjestust, lõigates kogu seondumisala ahelast välja. Need vajavad kofaktoritena S-adenosüülmetioniini ja Mg2+-ioone.

IIE tüüpi restriktaasid (nt NaeI) seonduvad oma äratundmisjärjestusega kahes kohas. Üks neist on replikatsioonisait, teist ala kasutab ensüüm allosteerilise aktivaatorina, mis kiirendab DNA lõikamist.

IIF tüüpi restriktaasid (nt NgoMIV) toimivad sarnaselt IIE tüüpi restriktaasidega, kuid lõikavad DNA järjestuse mõlemast seondumisalast korraga.

IIG tüüpi restriktaasidel (nt Eco57I) on sarnaselt II tüüpi restriktaasidega üks allüksus, kuid need vajavad kofaktorina S-adenosüülmetioniini.

IIM tüüpi restriktaasid (nt DpnI) tunnevad ära ja lõikavad metüleeritud DNA-d.

IIS tüüpi restriktaasid (nt FokI) lõikavad DNA-d kindla nukleotiidse järjestuse kauguselt oma äratundmisjärjestusest, mis on asümmeetriline ja mittepalindroomne. Need ensüümid võivad funktsioneerida dimeeridena.

IIT tüüpi restriktaasid (nt Bpu10I ja BslI) koosnevad kahest erinevast allüksusest. Mõned selle alamklassi ensüümid seonduvad palindroomse järjestusega, teised asümmeetrilise järjestusega.

III tüüp

III tüüpi restriktaasidel (nt EcoP15) on kaks erinevat mittepalindroomset äratundmisjärjestust, mis on vastassuunalised. Ensüüm lõikab DNA-ahela läbi 20–30 aluspaari kauguselt seondumisalast. Nendel ensüümidel on mitu allüksust, need täidavad nii metüleerimise kui restriktsiooni ülesannet ning need vajavad S-adenosüülmetioniini ja ATP-d. Selliseid restriktaase kasutavad prokarüoodid selleks, et kaitsta end sissetungiva võõra DNA eest. III tüüpi restriktaasid on hetero-oligomeersed multifunktsionaalsed valgud, mis koosnevad kahest allüksusest (Res ja Mod). Mod-allüksus tunneb ära spetsiifilise DNA järjestuse ja on DNA modifitseerimiseks vajalik metüültransferaas. Res on vajalik restriktsiooniks, kuid iseseisvalt pole see aktiivne. III tüüpi restriktaasidel on 5–6 aluspaari pikkused asümmeetrilised äratundmisjärjestused ning need lõikavad DNA-ahela läbi 25–27 aluspaari kauguselt pärisuunas, jättes vabaks lühikese üheahelalise üleulatuva 5’ otsa. Selleks, et ensüüm lõikaks, on vaja kaht vastupidise suunaga metüleerimata äratundmisjärjestust. III tüüpi ensüümid metüleerivad adenosüüljäägi N-6-positsioonil ühe DNA-ahela, seega on värskelt replitseeritud DNA-l vaid üks metüleeritud ahel, kuid see on piisav, et kaitsta seda uue restriktsiooni eest.

Tehislikud restriktaasid

Tehislikke restriktaase valmistatakse, liites looduslikke või tehislikke DNA seondumisdomeene nukleaasdomeenidega (selleks on sageli IIS tüüpi restriktaasi FokI-i restriktsioonidomeen). Sünteetilised restriktaasid suudavad ära tunda suuri saite (kuni 36 aluspaari) ja neid võib panna seonduma mis tahes DNA-järjestusega. Tsinksõrmnukleaasid on geenitehnoloogias enim kasutatavad tehislikud restriktaasid.

Näited

Näiteid restriktaasidest:

EnsüümAllikasSpetsiifiline järjestusLõige
EcoRIEscherichia coli
5'GAATTC
3'CTTAAG
5'---G     AATTC---3'
3'---CTTAA     G---5'
EcoRIIEscherichia coli
5'CCWGG
3'GGWCC
5'---     CCWGG---3'
3'---GGWCC     ---5'
BamHIBacillus amyloliquefaciens
5'GGATCC
3'CCTAGG
5'---G     GATCC---3'
3'---CCTAG     G---5'
HindIIIHaemophilus influenzae
5'AAGCTT
3'TTCGAA
5'---A     AGCTT---3'
3'---TTCGA     A---5'
TaqIThermus aquaticus
5'TCGA
3'AGCT
5'---T   CGA---3'
3'---AGC   T---5'
NotINocardia otitidis
5'GCGGCCGC
3'CGCCGGCG
5'---GC   GGCCGC---3'
3'---CGCCGG   CG---5'
HinfIHaemophilus influenzae
5'GANTCA
3'CTNAGT
5'---G   ANTC---3'
3'---CTNA   G---5'
Sau3AStaphylococcus aureus
5'GATC
3'CTAG
5'---     GATC---3'
3'---CTAG     ---5'
PvuII*Proteus vulgaris
5'CAGCTG
3'GTCGAC
5'---CAG  CTG---3'
3'---GTC  GAC---5'
SmaI*Serratia marcescens
5'CCCGGG
3'GGGCCC
5'---CCC  GGG---3'
3'---GGG  CCC---5'
HaeIII*Haemophilus aegyptius
5'GGCC
3'CCGG
5'---GG  CC---3'
3'---CC  GG---5'
HgaIHaemophilus gallinarum
5'GACGC
3'CTGCG
5'---NN  NN---3'
3'---NN  NN---5'
AluI*Arthrobacter luteus
5'AGCT
3'TCGA
5'---AG  CT---3'
3'---TC  GA---5'
EcoRV*Escherichia coli
5'GATATC
3'CTATAG
5'---GAT  ATC---3'
3'---CTA  TAG---5'
EcoP15IEscherichia coli
5'CAGCAGN25NN
3'GTCGTCN25NN
5'---CAGCAGN25NN   ---3'
3'---GTCGTCN25   NN---5'
KpnIKlebsiella pneumoniae
5'GGTACC
3'CCATGG
5'---GGTAC  C---3'
3'---C  CATGG---5'
PstIProvidencia stuartii
5'CTGCAG
3'GACGTC
5'---CTGCA  G---3'
3'---G  ACGTC---5'
SacIStreptomyces achromogenes
5'GAGCTC
3'CTCGAG
5'---GAGCT  C---3'
3'---C  TCGAG---5'
SalIStreptomyces albus
5'GTCGAC
3'CAGCTG
5'---G  TCGAC---3'
3'---CAGCT  G---5'
ScaIStreptomyces caespitosus
5'AGTACT
3'TCATGA
5'---AGT  ACT---3'
3'---TCA  TGA---5'
SpeISphaerotilus natans
5'ACTAGT
3'TGATCA
5'---A  CTAGT---3'
3'---TGATC  A---5'
SphIStreptomyces phaeochromogenes
5'GCATGC
3'CGTACG
5'---GCATG  C---3'
3'---C  GTACG---5'
StuIStreptomyces tubercidicus
5'AGGCCT
3'TCCGGA
5'---AGG  CCT---3'
3'---TCC  GGA---5'
XbaIXanthomonas badrii
5'TCTAGA
3'AGATCT
5'---T  CTAGA---3'
3'---AGATC  T---5'

Tähistused:

* = tömp ots
N = C või G või T või A
W = A või T