Otsing sellest blogist

UUS!!!

Dorsaalsus

Dorsaalsus  on selgmine, selja poole jääv paiknemine. Sõna "dorsaalne" kasutatakse  elundite  ja nende osade topograafilis-anatoom...

neljapäev, 21. august 2025

Tüümus

Blogi, mis räägib kõigest, mis on Leonhardile oluline ja/või huvitav. Kommenteerige, tellige, lugege, nautige ja õppige.

Tüümus ehk harkelund on tänapäeval paljudel selgroogsetel loomadel sünnieelselt peamiselt epiteelkoest koosnev lõpustaskutekkeline esmane lümfoidorgan.

Sünnijärgselt koosneb tüümus valdavalt lümfoidkoest[1], mille funktsioonideks on lümfoid(-immuun)süsteemi elundite ja lümfikudede arengu ning mujal kehas toimuvate rakuliste immuunvastuste reguleerimine, ka autoimmuunsuse ärahoidmine.

Selgrootutel harkelundit ei ole, neil reguleerivad kaitsefunktsioone mitmed endokriinsete funktsioonidega rakud ja hormoonid.

Harkelundi areng, anatoomia, morfoloogia, histoloogia, taandareng ja rakkude populatsioon ja apoptoos ning ringlevad molekulid ja elundi patoloogia võivad erineda nii liigiti, indiviiditi kui ka arenguastmeti.

Tüümuse uuringud

Inglise kirurgi ja arsti Geoffrey Keynesi (1887–1982) arvates võis tüümus Hippokratese ja Aristotelese jaoks tundmatu olla.

Varaseimaks harkelundi kirjeldajaks loetakse kreeka arsti Rufus Ephesust (98–117 AD), kelle anatoomiliste uuringute keskmes olid nii tüümus, süda aga ka pankreas.

Edasised anatoomilised uuringud tüümuselundi kaudu on kirjas Claudius Galenosel (129–199).). Galenos selgitas oma katsetega välja asjaolu, et tüümus on noorematel isenditel küllaltki suuremõõduline, kuid aja jooksul kuivavad tüümuselundi mõõtmed kokku.

Flaami anatoom ja arst Andreas Vesalius (1514–1564) kirjeldas tüümust oma teose "De humani corporis fabrica" 3. peatükis.

Inglise anatoom ja arst Francis Glisson (1597–1677) olevat oma teoses "Anatomia Hepatis" kirjeldanud tüümust kui loote toitumise jaoks vajalikku glandula nutritia '​t.

Itaalia poeet ja arst G. I. Pozzi arvas 1732, et tüümus on võimeline kokku tõmbuma ja toimib lümfisüsteemi pumbana.

Inglise kirurg ja anatoom William Hewson (1739–1774) uuris alamate selgroogsete lümfisüsteemi mikroskoobiga ja järeldas, et tüümuses ja põrnas leiduvad lümfotsüüdid komplekteeritakse, funktsioonidest lähtuvalt, nende elundite poolt.

1828 kirjeldas Henri Milne Edwards (1800–1885) tüümusekeha funktsioone veel mitte teadaolevatena.

Inglise kirurg ja anatoom Sir Astley Cooper kirjeldas oma 1832. aastal avaldatud teoses "The Anatomy of the Thymus Gland, with numerous plates" näärme suuri varieeruvusi nii kujus kui ka suuruses ja arvas, et näärme olulisus lootel seisneb eksistentsi ja kasvu tagamises (selles osas nõustus ta Glissoniga).

Teoses tsiteerib Cooper mitmel korral ka Hewsoni, kes pidas tüümust näärmestruktuuri ja otstarbe sarnasuse tõttu lümfinäärmete lisaks.

Sir Astley Cooper kirjeldas näärmel 'õõnsuse' ehk 'reservuaari' olemasolu, millest väljub lahti lõigates hulgaliselt valget vedelikku (ingl white fluid) (tänapäevases mõistes ilmselt lümf).

1859 avaldas ajakiriThe New York Journal of Medicine meditsiinidoktor Alexander Friedlebeni 1858. aastal ilmunud teose "The Physiology of the Thymus Gland in Heath and Disease; viewed from Experimental Examinations and Clinical Experience a Contribution to the History of Infantile Life" (tõenäoliselt tõlkeversioon) tutvustuses mitmeid harknäärme füsioloogiat ja patoloogiat puudutavaid kirjeldusi. Nii seisab tutvustuses, et nääre on juhadeta; tüümusehaigused väga haruldased ja tüümus ei olevat võimeline ei tervise ega haiguse juures takistama hingamist ega vere ringlust ning tüümuse astmat ei olevat olemas; pealegi ei ole tüümus koertel elutähtis elund.

Bunge (Gustav von Bunge (1905)) kirjelduste kohaselt kuulub tüümus, histoloogilise koostise alusel, lümfoidelundite hulka.

Enamik varasemaid tüümuse või selle osade uurimise kohta avaldatud materjale pärineb kas kirurgiliste protseduuride kõrvalsaaduste, surnud inimeste lahanguprotokollide või katseloomadega läbi viidud eksperimentide käigus või järgselt eemaldatud tüümuste uurimiste tulemusel avaldatud informatsioonil.

[960. aastatel arvati, et näärme tähtsus seisneb kasvu reguleerimises, organismi desintoksikatsiooniprotsessides, vee- ja rasva-ainevahetuses, võib-olla ka vitamiinide ainevahetuse regulatsioonis, lümfotsüütide produtseerimises ja tümo-lümfaatilise seisundi (suurenenud tüümus) arenemises ning võimalik, et ka osavõtt kaltsiumi- ja nukleiinide ainevahetuse regulatsioonist.

Viimastel aastakümnetel on teaduse areng ja tehniline progress võimaldanud toota ka hulgaliselt erinevaid tüümuse koekultuure, tüümuse rakukultuure ja tüümuse rakuliine ning uurida neid teaduslikult.

Eemaldatud tüümused ja aretatud kultuurid ei asenda kaasasündinud toimivat tüümust ega garanteeri uuringute tulemuste täielikku vastavust tegelikkusele.

Tüümuse evolutsioon

Tüümus on enamikul selgroogsetel, nagu kaladelkahepaiksetelroomajatellindudelimetajatel (sh inimestel), lümfisüsteemi arengut ja toimimist, aga ka teatud patoloogilisi protsesse reguleeriv elund.

Esimesed tõendid tänapäeva selgroogsete omaga sarnase lümfisüsteemi ja selle elundite olemasolu kohta pärinevad Maa ligi 4,54 miljardi aasta vanuse ajaloo viimase 500 miljoni aasta piirest.

Tüümuse anatoomia

Selgroogsete alamhõimkonna tüümuse võrdlev anatoomia

20. sajandi algusaastatel ei tuvastatud tüümuselundit osadel keelikloomadel.

Dohrnsi ja Schaffersi uurimused indikeerisid sõõrsuudel tüümusega sarnanevaid struktuure.

Tüümuselundit peetakse fülogeneesi esimeseks kaitseorganiks kõhrkaladel ja luukaladel.

Sõõrsuude (ojasilmmerisuttlõpuste filamentide otstes talitlevad tüümuse-eelsed struktuurid tümoidid, kus paiknevad T-rakud ja ekspresseeritakse vastavaid geene (FOXN4L, CDA1 jt), mida teistel loomadel seostatakse tüümusega.

Kõhrkalade tüümus

Dohrn'i (1884) arvates areneb kõhrkalade klassi liigitatuil tüümus 1.–5. lõpusetasku 'vohangutest' (väljasopistis).

Johan August Harald Hammar (1910) on uurinud kõhrkalade tüümust – see paikneb neil naha all, koosneb tüümuse sagaratest, millel saab eristada tüümuse koort ja säsi.

Ganoidenthymus (tänapäeval võib-olla kiiruimsete klassi alamklassidel Chondrostei ja Holostei) on neil loomadel vähe uuritud, tüümuse olemasolu neil on tõendanud Hermann Friedrich Stannius (1839).

Teleostierthymus't on uurinud Maurer (1886).

Roomajate tüümus

Kilpkonnaliste selts

Kilpkonnalistel on tüümus samuti sagaraline – kuid nende arv on varieeruv – neil võib olla 3 või 4 tüümust.

Schildkrötenthymus võis koosneda ühest paaritust ja lisaks paarilisest näärmest.

Maoliste alamselts

Maoliste tüümust on vähe uuritud, kuid arvatakse, et tüümus on neil üks esimesi lümfoidorganeid, mis välja areneb. Mao tüümust (saksa der Ophidienthymus) on maininud juba Blasius (1681).

Harkelund paikneb kilpnäärme ja vahetult südame tipu ees.

Madude tüümus on osadel madudel, nagu boapüütonvilbasnastikHydrus ja lõgismadu tõenäoliselt kahesagaraline elund.

2 tüümuse sagarat (või ka mitmest tüümuse sagarikust koosnev) kummalgi kehapoolel on nastikul ja harilikul silenastikul.

Sisalikumaol aga on tüümus rasvkoega nii läbipõiminud, et mõjub ühesagaralisena.

Madude (nagu paljude teistegi roomajate) tüümuse rakkude pinnal olevad molekulid sarnanevad seerumi immunoglobuliinidega, kuid on tõenäoliselt T-rakkude retseptorite eelkursorid.

Lindude klass

Linnu tüümusele pööras tähelepanu Itaalia anatoom Giovanni Battista Morgagni (1762).

Lindudel paikneb harknääre kaelal otse naha all.

Imetajate klass

Elevantidel on tüümus püramiidjas ja kahesagaraline.

Hiire tüümus

Hiire tüümust on teadlased uurinud juba mitme aastakümne jooksul.

Täpsed andmed selle kohta, mitu tüümust hiirel on, puuduvad. Osade uurijate arvates võib hiirel paikneda toimiv 2. tüümus ka kaelapiirkonnas.

Närilise tüümuse epiteel areneb lootel 3. ja 4. lõpusetasku endodermist ja mesenhüümist. Tüümus koos kilpnäärmega migreerub kaudaalselt ning 15. päeval eraldub tüümus ja liigub rindkere (thorax) suunas. Embrüoaalse thymus primordium '​i rakukogumine koed võivad moodustada ektoopilise tüümuse kudesid kaelas, kilpnäärmes ja kõrvalkilpnäärmes.

Emaste hiirte tüümus kaalub rohkem kui isaste oma, tüümuse kaal võib varieeruda ka hiiretüvede lõikes.

Tiine emase hiire tüümus teeb tiinuse ajal kaasa märgatavaid muutusi nagu atroofia, kuid rakkude funktsioonid (töövõime) uurijate arvates säilivad.

1971 avaldatud uurimus, milles kasutati ühe päeva vanuseid vastsündinud Charles Riveri hiirepoegi, kelle keskmine kehakaal oli 20,0 grammi ja tüümuse kaal 6,2 mg, esitab materjali tüümuse koore rakkude migratsiooni kohta Peyeri naastudesse.

Hiire normaalne ealine tüümuse vananemine toimub paljude tegurite koostoimel, esineda võib muutusi tüümuse epiteelirakkude spetsiifiliste markerite ekspressioonis, tüümuse fibroblastide hulga suurenemine, apoptootiliste rakkude hulga suurenemine jpm.

Lümfopoees hiire tüümuses

1969 avaldatud uurimuses, mis põhines 80 kahe päeva vanuste mõlemast soost 'ohverdatud' Swiss albiino hiirte (Hale-Stoner tüvi) autoradiograafilisel uurimisel, tuvastas, et hiirtel migreeruvad tüümuse lümfirakud tüümuse koore osast perivaskulaarsetesse kanalitesse, mis paiknevad tüümuse kortikomedullaarse tsooni lähedal, kahe päevaga ja siis kaovad – enamik neist tõenäoliselt migreerub tüümusest lümfisoonte kaudu.

Lümfopoees – G2- faas: enamikul rakkudel 86–94 minutit, mitoos: 27–44 minutit; DNA süntees: 7 tundi; teke 93 tundi.

Hiire tüümus ja Ebola viirusnakkus

Täiskasvanud emaseid BALB/C laborihiiri nakatati hiirte tarvis muundatud Ebola viirusega ja hiired tapeti viiendal nakatumisjärgsel päeval.

Kudesid uuriti valgusmikroskoopiimmunohistokeemiatelektronmikroskoopi ja in situ hübridisatsiooni kasutades.

Viiruse replikatsioon toimus makrofaagides, lümfisõlmedes, põrnas, hepatotsüütides, neerupealise koore rakkudes, fibroblast-like cells (FLC). Severe lymphocytolysis oli tuvastatav põrnas, lümfisõlmedes ja tüümuses.

Hiire tüümus ja gripiviiruse tüvi H7N7

Laborihiirte nakatamisel gripiviiruste tüvedega H7N7 (infektsioon kutsus esile leukotsüütide absoluutarvu vähenemise 84%) ja H5N1 (leukotsüütide arv vähenes kuni <5%) täheldati tüümuse tuntavat atroofiat juba nakkuse 6. päeval. CD4+CD8+ tümotsüütide polulatsioon oli HPAIV-infektsiooni (Highly Pathogenic Avian Influenza Virus infection) korral pea tuvastamatu. Lümfotsütopeeniat ei täheldatud H1N1v ja H5N2 infektsioonide korral.

Hiire tüümuse kiiritamine

Katsed hiirtega on näidanud, et kiirituse vastuvõtule järgnevate rakukahjustuste korral suureneb hiire tüümuses IL-22 tootmine, arvatakse, et nimetatud interleukiin toetab tüümuse epiteelirakkude funktsionaalsuse jätkamist ja paljunemist.

Kemoresistentsed vähirakud

Medikamentoosne onkoloogia leiab küll rakendust vähktõvega seotud valdkondades, kuid osade uurijate arvates ravib kemoteraapia pahaloomulisi kasvajaid väga harva, selle tõenduseks on liig sageli teatud kemoresistentsete vähirakkude taaslevik.

Hiirte lümfoomi mikrokeskkonna uuringud on tuvastanud, et manustatud doksorubitsiin indutseerib hiire tüümust ekspresseerima rohkem tsütokiini IL-6 ja TIMP metallopeptidaasi inhibiitor 1, mis katsete tulemuste valguses kaitsevad neid vähirakke nimetatud aine hävitava toime eest, peamiseks lümfoomirakkude kaitseorganiks rindkereõõne keskosas, kus paiknevad südasöögitoru ja hingetoru ning lümfikudede kõrval, oli tüümus. Kuna indutseeritud lümfoomiga (süstelahus) katsealustel hiirtel tuvastati kemoteraapia agensi poolt puutumata jäänud lümfoomirakke rohkelt just tüümuses, arvatakse, et tüümuse epiteelirakkude eritatavad faktorid moodustavad kaitsebarjääri osade kemoteraapias kasutatavate keemiliste ainete vastu.

Tüümuse koe siirdamine

Tüümuseta laborihiirte lümfisõlmedesse siirdatud tüümuse koed lõid neil hiirtel toimiva immuunsüsteemi.

Koaala tüümus

Varaseima koaala kaela tüümuse kirjelduse on avaldanud anatoomiaprofessor Johnson Symington (1900). Symington kirjutab, et tüümuse kehad jäeti varem tähelepanuta või peeti neid sülje- või lümfinäärmeteks. Symingtoni poolt lahti lõigatud 30 sm koaala kaelas paiknes kaks tüümusesagarat – mõlemad keskmiselt 15 mm pikad, 12 mm laiad ja 3 mm paksud. Tüümusesagarad koosnesid koorest ja säsist ning Hassalli kehadest.

Koaala embrüol on tuvastatud tüümus ka embrüonaalses arengujärgus.

1996. aastal tuvastati neoplastiline protsess (makroskoopiliselt, hematoloogiliselt, histoloogiliselt ja immunohistoloogiliselt) – tüümuse lümfosarkoom 7 aasta vanusel emasel koaalal.

Koduloomade tüümus

Koertel ja kassidel toimub tüümuse taandareng ning asendumine side- ja rasvkoega paralleelselt suguküpsuse saabumise ja piimahammaste vahetumisega.

Hobustel toimub tüümuse areng kuni teise elukuuni, seejärel areng aeglustub ning hakkab hiljem taandarenema, asendudes side- ja rasvkoega.

Lamba tüümus

Lamba embrüol on tuvastatud tüümus embrüonaalses arengujärgus.

Lamba embrüo tüümus hakkab formeeruma tiinuse esimesel trimestril. Meriino lammaste neonataalne tümektoomia takistab uurijate arvates perifeersete T-rakkude populatsioonide normaalset teket.

Lamba tüümus kasvab edasi ka pärast lambatalle sündi ja saavutab maksimummõõtmed ~2 kuu vanuses.

Pole selge, kas lammaste jaoks on tüümus elutähtis elund – in utero tümektoomia läbinud lambatalledel ei tuvastatud postnataalse arengu jooksul nn runting syndrome (tüümuse atroofia jm).

Lamba tüümus on paariline elund, mille vasak ja parem pool asuvad mõlemal pool kaela – saab eristada tüümuse kihnu, koort, säsi, kortikomedulaarset tsooni.

Lambalt eemaldatud suurenenud tüümus

Lamba tüümuses on tuvastatud Hassalli kehade lõhustamine makrofaagide poolt – lamba embrüo tüümuses toimub suurenenud Hassalli kehade lõhustamine makrofaagide poolt kas tiinuse lõppedes või kohe pärast lambatalle sündi, ning asendatakse uute Hassalli kehadega. Arvatakse, et see on normaalne füsioloogiline protsess, mis peaks kestma kogu lamba eluea.

Merisea tüümus

Meriseal on tuvastatud tüümuse sagarad kaelapiirkonnas (Ruben, Maximow). Osad varasemad eksperimendid indikeerivad, et merisigadel võib tüümuse eemaldamine mõjutada teatud kehakaaluga isasloomadel munandeid – põhjustades hüpertroofiat.

Vastsündinud merisea (kaal 100 gm) tüümuse sagara mõõtmed on : 10 x 15 x 7 x 10 mm.

Olles eemaldanud 55-l 1-, 2-, 3- või 4-päevasel meriseal tüümused, jälgiti loomi mõnda aega ja siis tapeti. Osadel tapetud merisigadel tuvastati kõrvalkilpnäärmete lähedal tüümusekoe jäänukeid sagarate näol, selgelt eristatava koore ja säsiga.

Erinevalt mõnedest teistest katseloomadest ei tuvastatud merisigadel tüümuse eemaldamise järgselt rahhiiti.

Vanemate merisigade tüümse sagarate mõõtmised indikeerivad nende mõõtmete kahanemist, kuid koor ja säsi jäävad ka rasva kõrval tuvastavateks. Merisea tüümuse moodustavad koor, säsi, tüümuse kihn, vaheseinad, tümotsüüdid jm.

Arvatakse, et kuna tüümuses toimub DNA süntees, on elund võimeline talitlema kogu eluaja.

Opossumlaste tüümus

Opossumi embrüonaalne tüümus hakkab tõenäoliselt formeeruma 3. ja 4. lõpusetasku endodermist.

Virgiinia opossumi tüümus on paariline struktuur, mis paikneb aordikaare lähedal (rinnas) ja koosneb sünnijärgselt diferentseerumata embrüonaalsetest rakkudest. Opossumitel on tüümus oluline lümfoidsete kudede arengul ja toimimisel.

Opossumi tüümusel saab eristada tüümuse kihnu.

Roti tüümus

Roti tüümusel saab eristada koort ja säsi. Roti tüümus on osaliselt sagarikeks formeerunud. Tüümuse sagarikud on ühenduses sidekoest väätidega, mis on ühenduses tüümuse kihnuga.

Roti tüümus sisaldab tüümuse epiteelirakke, tümotsüüte, Hassalli kehi, plasmarakke ja nuumrakke.

Roti tüümuse areng jätkub kuni suguküpsuse saabumiseni, sellele järgneb normaalne ealine taandareng.

Katsed 6–8 nädala vanuste albiino rottide elunditega tuvastasid, et nende tüümuse rakkude (tümotsüüdid, lümfotsüüdid) tuumad sünteesivad adenosiintrifosfaati.

Katsed laborirottidega võivad indikeerida seda, et tüümus võib hüpotalamuse-hüpofüüsi-gonaadide telje kaudu mõjutada maksa talitlust.

Närvistus

Roti tüümuse kihnu all, sees ja tüümuse kortikomedullaarses tsoonis ning vähemal määral ka koores on tuvastatud sümpaatilise närvisüsteemi noradrenergilisi neuroneid.

Eksogeensete hormoonide manustamine

Katsed laborirottidega, kellele manustati eksogeenset melatoniini, tuvastasid, et hormoon takistas stressis loomadel tüümuse involutsiooni kas osaliselt või valdavalt.

Eksogeensete lektiinide manustamine

Harilikust sibulast eraldatud lektiinil Allium cepa agglutinin immunomodulleerivaid toimeid uuriti roti peritooneumi makrofaagidele, lektiin in vitro suurendas lämmastikoksiidi (nitric oxide), proinflammatoorsete tsütokiinide (TNF-α ja IL-12) sünteesi ja soodustas hiire tümotsüütide paljunemist 24 tunni jooksul umbes 4-kordselt (võrreldes kontroll-kultuuriga), kuid ei soodustanud roti B-rakkudega splenotsüütide paljunemist.

F344 rats

Katse, kus 3. rühma F344 rotte toideti 7 nädala jooksul E-vitamiiniga rikastatud toiduga (0, 50 ja 585 mg/kg toidu kohta) indikeerivad, et E-vitamiin võib oluliselt mõjutada T-rakkude diferentseerumist tüümuses.

Sea tüümus

Uurimuse jaoks 'ohverdatud' nelja sea tüümused olid kahesagaralised. Sea tüümusel tuvastati tüümuse kihn, koor, kortikomedullaarne tsoon, säsi ja Hassalli kehad.

Ühes uuringus nakatati 21 siga sigade Aafrika katku viiruse isolaadiga Spain-70. Sigade tapmise järel tuvastati neil ka tüümuse lesioone, kuid arvatakse, et need koos tümotsüütide rohke apoptoosiga, ei mängi akuutse sigade Aafrika katku korral määravat rolli.

Veise tüümus

Ravimina

Tüümuse ekstrakt on organoteraapias (elundiekstraktravi) kasutatav bioloogiline preparaat, mida toodetakse lehma tüümusest ja kasutatakse mitmete infektsioonhaiguste nagu grippuus gripp A(H1N1)B-hepatiitC-hepatiitmononukleoosohatisurkepõletik ja AIDS/HIV korral.

Elunidekstrakti kasutatakse ka astma, allergilise riniidi, toiduallergiate, pahaloomuliste kasvajate, reumatoidartriidi, viirusnakkusejärgse väsimussündroomi, süsteemse erütematoosse luupuse ravis.

Veel kasutatakse tüümuse ekstrakti vähihaigetel, kellele on tehtud kiiritusravi või kemoteraapiat, valgete vereliblede tootmise tagamiseks.

Vasika tüümus

Värskelt tapetud vasika (tund pärast tapmist) tüümusekudedest eraldatud ja töödeldud tüümuse fragmentides (nt tümotsüütide mitokondrites, tümotsüütide rakutuumades) on vastavate seadmete ja preparaatidega tuvastatud tsütokroome: mitmeid tsütokroom a-sidb-sid ja c-sid.

Vasika tüümuse deoksüribonukleoproteiini (deoxyribonucleoprotein) uurimine X-kiirguse fluorestsentsmeetodiga indikeeris FeNiCu ja Zn esinemist ning CrMn ja Co mitteesinemist.

Proboost

PROBOOST Thymic Protein A on toode, mis sisaldab vasika tüümuse rakukultuuridest eraldatud thymic Protein A-d. Toodet reklaamitakse inimestele mõeldud toidulisandina, mis teoreetiliselt peaks toimima sarnaselt looduslikest allikatest eraldatud ja töödeldud tüümuse ekstraktiga.

FDA ei ole tootele hinnangut andnud.

Tümostimuliin

Tümostimuliin (CAS-i number 117149-30-3) on vasika tüümusest eraldatud immunostimulantse toimega faktor, mis stimuleerib T-rakkude paljunemist ja diferentseerumist.

Subproduktina

Kulinaarias valmistatakse vasika tüümusest rooga, mille prantsuskeelne nimetus on ris de veau.

Esikloomaliste tüümus

Reesusmakaagi tüümus

Ahvi embrüonaalse tüümuse uurimisel kasutati tiinete reesusmakaakide (Macaca mulatta) emasahvidelt keisrilõikega kätte saadud erinevas vanuses 'ahvibeebisid', kellel tuli tüümuse välja lõikamiseks eemaldada pea kehast. Reesusmakaakide 40–50 päeva vanuste embrüote tüümusel tuvastati tüümusekihn, histoloogiliselt aga rohkesti epiteelirakke ja väheseid tümotsüüte. Reesusmakaagi tüümus saavutab suurimad mõõtmed 1. eluaastaks.

Inimese tüümus

Tüümuse patoloogia

Tüümuse patoloogia (thymus gland pathology) all peetakse silmas erinevatel selgroogsetel loomadel mitmeid tüümuse arengu ja toimisega tuvastatud anatoomilisi, füsioloogilisi, geneetilisi, histoloogilisi jmt kaasasündinud või omandatud patoloogilisi seisundeid, mida käsitletakse mitmete teadusdistsipliinide lõikes kas normidest kõrvale kalduvatena või haiguslikena ja mis võivad tüümusehaigusi põhjustada.

Olenevalt kõrvalekalde ja/või haiguse liigist ning loomaliigist tegeleb tüümuse patoloogia tuvastamise ja haigega kas geneetik, kirurg, onkoloogveterinaarradioloog jt spetsialistid.

Tüümuse patoloogia tundmine võib osutuda patsiendi tervise jaoks oluliseks, kuna tüümusega seostatakse immuunkaitset ja selle patoloogiaga immuunvastuse vähenemist ja/või puudumist.

Tüümusehaiguste korral tuleb erilist tähelepanu pöörata vaktsineerimise võimalikkusele.

Tüümuse suhted teiste elundisüsteemidega

Südame-veresoonkond

Vereringe kaudu varustavad elundit arteriaalse verega sisemise rindkerearterialumise ja ülemise kilpnäärmearteri ning arteria subclavia harud, kuna elundil puudub värat sisenevad arterid parenhüümi koore kaudu.

Tüümusest lähtuvad paljud väikesed harkelundiveenid mis juhivad verd vasaku õlavarre peaveeni, sisemiste rindkereveenide ja alumise kilpnäärmeveeni kaudu südame suunas.

Elundi mikrovereringe on koore ja säsi osas varieeruv, igast sagarikust väljuvad kapillaarid tüümuse koorde ja suuremad sooned säsisse. Koore kapillaarid ühinevad veenidega kortikomedullaarse tsooni ühenduskohtadel ning moodustavad koores vere-tüümuse barjääri (säsis tõke puudub).

Lümfisüsteem

Tüümuse füsioloogiline seisund on pidevas muutumises, kuid kuna tüümusse ei suundu aferentseid (tooma) lümfisooni, ei saa elund ringlevatele antigeenidele reageerida.

Tüümuse lümfisooni kirjeldas juba Bartholinus (1655).

Hammari arvates võis tüümuses talitleda suletud lümfisüsteem.

Tüümuse kortikomedullaarse tsooni ülemineku kohalt ja tüümuse säsist saavad alguse viimalümfisooned, mis kulgevad koos veresoontega ja väljuvad elundist kihnu kaudu.

Tüümuse lümfisoonte võrgustik moodustub lümfikapillaaridest, mis järgivad veresooni.

Perivaskulaarsetest ruumidest saavad alguse väikesed eferentsed lümfikapillaarid.

Tüümuse lümf

Tüümuselümf voolab nodi lymphoidei brachiocephalici]', trahheobronhiaal- ja parasternaalsetesse lümfisõlmedesse.

Hewson (1777) arvas tüümuse tüümus-lümfisõlmeks ja uuris mikroskoopiliselt selle õõnsusest välja lastud 'valget vedelikku'. Ta tuvastas selles kettakujulisi moodustisi (Hassall nimetas need Hassalli kehadeks 1846) ning arvas, et tüümus osaleb vereloomes.

Immuunsüsteem

Närvisüsteem

Esimesed kirjalikud materjalid selle kohta, et immuun- ja närvisüsteem on tihedates suhetes, ja lümfoidorganeid innerveerivad närvikiud, pärinevad tõenäoliselt W. Tonkoffilt (W. Tonkoff, 1899).

Tüümuse närvistus pärineb valdavalt autonoomsest närvisüsteemistdiafragmanärvist (n.phrenicus) ja ansa hypoglossi '​ist. Sümpaatiline närvistus kulgeb paralleelselt veresoontega ja pärineb kaela-rindkereganglionist (ganglion cervicothoracicum).

Tüümusesagarikke innerveeritakse närvide poolt eraldi. Närvid esinevad närvikiudude ja -põimikutena, närvikiud saabuvad ka uitnärvist. Enamik närvikiude allub noradrenaliini stimulatsioonile.

Hüpotalamuse-hüpofüüsi-tüümuse-teljele lisaks suhtleb tüümus ka peaajuga mitmete signaalide vahendusel aju-tüümus-lümfoid-telje kaudu (kahesuunaliselt) – tüümuse lümfoidrakud on võimelised sünteesima ja vabastama mitte üksnes tsütokiine, vaid ka neuropeptiideneurotransmittereid, kasvufaktoreid ja mitmeid hormoone.

Arvatakse, et tüümuse neuroendokriinse kontrolli tagab adenosiintrifosfaat.

Neuronaalsete juhtmolekulide semaforiinide retseptorid neuropiliinid avastati küll kesknärvisüsteemis, kuid arvatakse, et nad osalevad ka tümotsüütide migratsioonis.

Tümotsüütidel on tuvastatud opioidiretseptoreid: delta-κ- ja müü-retseptorid. Nende retseptorite roll tüümuses ja immuunsuse moduleerimisel ei ole selge.

Tüümus ja endokriinsüsteem

Tüümus endokriinelundina toimib sisenõrenäärmena, mis komplekteerib ja eritab (tüümuse koore rakkude poolt) mitmeid peptiidhormoone (tümosiin, tümuliin, tümopoietiin) ja osaleb paljunemisfunktsioonides.

Tüümuse oluliseks endokriinseks funktsiooniks on ka tsingi pakkimine zinc-thymulin bioaktiivsesse vormi, et seda omastaksid tüümuse epiteelirakud ja et see jõuaks lümfisüsteemi perifeersetesse kudedesse.

Osad tüümuse rakupopulatsioonid ekspresseerivad proinsuliini.

Hüpotalamuse-hüpofüüsi-tüümuse-telg

Hüpotalamuse kontrollile allutatud ajuripatsi eessagara eritatav kasvuhormoon modelleerib tüümuse mikrokeskkonna füsioloogiat, kiirendades tümotsüütide ja tüümuse epiteelirakkude paljunemist ning stimuleerides tüümuse hormoonide, tsütokiinide ja kemokiinide eritumist.

Tüümuse epiteelis on tuvastatud oksütotsiiniretseptorid, mis sünteesivad oksütotsiini.

Tüümuse rakud eritavad ka kõrvalkilpnäärme hormooni.

Tüümuselundi roll östrogeenide ja T-rakkude homöostaasi säilitamisel on naiste (aga ka emaste) elu ajal olulise tähtsusega.

Suguhormoonid mõjutavad tüümuse mikrokeskkonna epiteeli retikulaarrakkude retseptoreid ja T-rakkude vastuseid kontrollivaid märklaud-retseptoreid ja geene vastavalt vajadusele – kas ekspresseerides või vaigistades (näiteks tüümus-hüpofüüs-munasarjade telg).

Tüümus ja kõrvalkilpnääre

Kõrvalkilpnäärmed, mis embrüogeneesis arenevad koos tüümusega, paiknevad üsaväliselt üsna sagedasti (50%) tüümuse sees ja võivad koos põhjustada teatud hüperparatüreoosi.

Tüümus ja käbinääre

Tüümus ja vaheajus paiknev ning toimiv käbinääre on samuti seotud – pinealektoomia (käbinäärme kirurgiline eemaldus) järel on tuvastatav tüümuse atroofia.

Tüümus ja maks

Tüümus ja hingamissüsteem

Signaalirajad tüümuses

Wnt signaalirada

Wnt signaaliraja mitmeid lahustuvaid valke nagu Wnt-4, Wnt-7a, Wnt-7b, Wnt-10a ja 10b ekspresseerivad mitmed tüümuse rakupopulatsioonid nagu tüümuse epiteelirakud, arenevad tümotsüüdid jt.

Wnt signaaliraja molekulaartasandi mehhanismid tüümuses, nagu geenide, valkude ja retseptorite toimemehhanismid tüümuse rakkude võrgustikus ei ole seni veel selged.

Metallid

Mikrotoitained ja tüümus

Molekulid

Tüümus koosneb ligi 80% ulatuses veest (Quain,1849).

Antigeenid

Eikosanoidid

Tüümuse hormoonid

Tüümuse hormoonid (thymic hormones) on endokrinoloogias paljude selgroogsete sisenõrenäärme, näiteks tüümuse epiteeli, rakkude poolt eritatavate humoraalsete faktorite koondnimetus, need liigitatakse peptiidhormoonide hulka, ja nende teadaolevateks funktsioonideks on lümfisüsteemi arengu, T-rakkude diferentseerumise ja rakuliste immuunvastuste regulatsioon.

Tüümuse hormoonide süntees, eritus, signaalirajad, geenid, ensüümid, retseptorid ja toime ning roll tüümuses ja teistes elundites asetleidvates patoloogilistes protsessides on lõpuni uurimata.

Tüümuse hormoonide nomenklatuuris pole kokku lepitud.

Tüümuse hormoonid võivad mõjuda hüpotalamuse-hüpofüüsi-neerupealise teljele stimuleerivalt ning reguleerida ajuripatsi hormoonide vabastamist.

Ringlevate signaalmolekulide toime tüümusele

Värsked uuringud indikeerivad, et tüümuses on tuvastatavad ensüümid ja kofaktorid, mis on vajalikud glükokortikoidi sünteesiks, kuid pole teada kas tüümuses nimetatud steroidhormooni süntees ka toimub.

Tüümuse epiteelirakkudes eksisteerivad nii tüümuse hormoonide kui suguhormoonide retseptorid. Tüümuse hormoonide ekspressiooni ja eritust inhibeerivad manustatud suguhormoonid.

Uurijate arvates võivad glükokortikoidid ja rakuväline kaltsium signaliseerida küpsemata tümotsüütidele enesetapu vajadust.

Tüümusesiseselt võib toimuda hormoonide kasvuhormooni (GH), prolaktiini (PRL), lutropiini (LH), oksütotsiinivasopressiini ja somatostatiini tootmine (seostatakse retseptoritega).

Tüümuse füsioloogias mängib rolli leptiin. Teatud arenemisjärgus tüümuse T-rakud ekspresseerivad greliini retseptoreid ja eritavad greliini.

Integriinid

  • alpha 6 integrin
  • beta 4 integrin

Interleukiinid

Tüümuse erinevad rakud sünteesivad ja eritavad interleukiine nagu interleukiin-1 (IL-1α, IL-1β), interleukiin-6interleukiin-18, tuumori nekroosi faktor alfa (TNFalfa) jt.

Interleukiin-7 on tüümuse arenguks vajalik.

Kemokiinid

Täiskasvanu tüümuses toimub mitmete kemokiinide ekspressioon. Laboratoorse diagnostika meetodeid, nagu polümeraasi ahelreaktsioon ja in situ hübridisatsiooni kasutades, on tuvastatud kemokiine : CCL5, CCL8, CCL11, CCL17, CCl19, CCL21, CCL22, CC25, CXCL7, CXCL9, CXCL10, CXCL11, CXCL12, CXCL16.

Ligand

Lipiidid

Nukleiinhapped

Tüümuse desoksüribonukleiinhape

Tüümuse DNA sisaldab adeniiniguaniinitsütosiinitümiini.

Tüümuse ribonukleiinhape

Tüümuse RNA sisaldab adeniiniguaniinitsütosiiniuratsiili.

Nukleosiidid

Adenosiin

Adenosiini vabastatakse tümotsüütide valiku käigus. Normaalse toimiva tüümuse sisekeskkonnas toimub adenosiini katabolism adenosiindeaminaasi vahendusel.

Nukleotiidid

Adenosiintrifosfaati seostatakse tümotsüütide apoptootilise surmaga. ATP-d seostatakse ka PGE2 ja IL-6 eritamisega.

Retseptorid

CB2

Endokannabinoidsüsteemi moodustavatest retseptoritest on tüümuses tuvastatud CB2 kannabinoidi retseptorid.

CD-d

CD-rakkude pinnatunnuste klassifitseerimissüsteem pinnatunnuste retseptorid (markerid):

  • CD3 (diferentseerumise marker 3); CD4, CD8, CD30, CD120 (TNFR), CD150CD152CD279.

D-vitamiini retseptorid

D-vitamiini retseptoreid on tuvastatud T-rakkudel, makrofaagidel, koolitamata tümotsüütidel jt immuunrakkudel.

Opioidiretseptorid

Kappa opioidiretseptorid

Kappa opioidiretseptorid ehk κ-retseptorid ehk kappa-retseptorid (KOR) on opioidretseptorite perekonda kuuluv retseptoriliik, mis on tuvastatud suurajukoores ja mustaines ning mujal kesknärvisüsteemis, kuid seda retseptorit ekspresseerivad ka tümotsüüdid.

Nende retseptorite roll tüümuses ja immuunsuse moduleerimisel ei ole selge.

Tsütokiinid

Tüümuse tsütokiinide toime on paikne ja nende sünteesimise võime omistatakse kõikidele teatud profiili ja arenguastmega tüümuse rakupopulatsioonidele, kuid enim seostatakse tsütokiinidega siiski tüümuse epiteelirakke ja tümotsüüte.

Tüümuse tsütokiinide bioloogilise toime edastamisel loetakse määravaks tüümuse rakkude pinnal ekspresseeritavate tsütokiinide retseptoreid – osa ühtede rakkude eritatavatest tsütokiinidest võidakse edastada teist tüüpi rakkudele, nii näiteks indutseerib IL-7, mida sünteesivad tüümuse epiteelirakud või strooma fibroblastid CD4(-)CD8(-), tümotsüütide kasvu ja diferentseerumist.

Tüümuse tsütokiinide süntees on valdavalt spontaanne ja funktsiooniks on tümotsüütide migratsiooni regulatsioon. Tüümuse tsütokiinid ei osale oluliselt immuunvastuses.

Tüümuse epiteeli retikulaarrakud sünteesivad tsütokiinidena käituvaid valke ja/või faktoreid: näiteks interleukiin-1interelukiin-6, granulotsüüdi kolooniat stimuleeriv faktor (stimuleerib neutrofiilide produktsiooni) (G-CSF), makrofaagi kolooniat stimuleeriv faktor (M-CSF), ja granulotsüütide ja mkarofaagide kolooniat stimuleeriv faktor (GM-CSF).

Tümotsüütide küpsemist tüümuses mõjutab ka tsütokiin kasvaja kasvutegur beeta.

Valgud

Valkude süntees tüümuses toimub tümotsüütide tuumas.

  • COX-2, CYP2U1 (tsütokroom P450, valk kodeerib CYP2U1 geeni), JL1 (thymocyte surface protein) (tüümuse koore tümotsüütidel), HIF-1α, HO-1 (heme oxygenase-1), HLA-G, HSPE1, Pax1 (paired box protein Pax-1), Pax9, Vanin-1.

Apoptoosi indutseeriv faktor

AIF osaleb tümotsüütide arengus.

Coronin-1A

Tüümuse rakud ekspresseerivad Coronin-1A (CORO1A ehk TACO). Arvatakse, et valk osaleb T-rakkude homöostaasi tagamisel ja rakkude 'vabastamisel' tüümusest.

Laminiinid

Inimese tüümuses on tuvastatud mitmeid laminiine: laminiin 211, laminiin 511 jne.

Lektiinid

Galektiinid (S-lektiinid) reguleerivad T-rakkudes selliseid protsesse nagu rakkude signaalirajad, aktivatsioon, tsütokiinide eritamine ja ka apoptoos, nii arvatakse, et tüümuse mikrokeskkonnas osalevad galektiinid 1,3,8 ja 9 topeltpositiivsete ja topeltnegatiivsete tümotsüütide eliminatsioonil.

Tüümuse epiteelirakud ekspresseerivad galektiin-1. Arvatakse, et need valgud kutsuvad esile aktiveeritud T-lümfotsüütide surma.

Termogeniin

Tüümuses on tuvastatud T-rakkude arengus osalev valk termogeniin (UCP-1).

Tüümuse ekstratsellulaarne maatriks

Tüümuse stroomarakud ekspresseerivad, füsioloogilisest seisundist sõltuvalt erinevas koguses, fibronektiini, mille ülesandeks on vastavas arengujärgus tümotsüütide seondumine stroomarakkudega ja osalemine tümotsüütide diferentseerumisel.

Ka tüümuse stroomarakkude eritatav netrin-1 vahendab tümotsüütide adhesiooni.

Tüümuse mikrokeskkond

Tüümuse mikrokeskkonna all peetakse harilikult silmas tüümuse kolmedimensionaalset mitte-lümfoidsete ER-rakkude võrgustikku, mille hulka kuuluvad ka tüümuse epiteelirakud, tüümuse dendriitrakud, makrofaagid, fibroblastid ja ekstratsellulaarne maatriks.

Tüümuse mikrokeskkond on pidevas muutumises, kuid iseloomulikuks võib pidada selles teatud rakutüüpide esinemist: tüümuse epiteelirakudHassalli kehad, makrofaagid, tüümuse dendriitrakud, Langerhansi rakud ja epithelial reticular cells (neil on retseptorid östrogeenidele, androgeenidele ja progestiinile) koosnev toeskude jt. Elundis on ringlemas ka koolitamata B-lümfotsüüdid.

Tüümuse mikrokeskkond on kohandunud T-lümfotsüütide arenguks, koolitamiseks ja nende populatsioonide kontrolli all hoidmiseks.

Tüümuse mikrokeskkond on füsioloogiliselt allutatud neuroendokriinsele kontrollile.

Harkelundisse liiguvad tüvirakkudest (tümotsüüdid) arenenud naiivsed T-rakud punasest luuüdist (embrüonaalses arengujärgus saccus vitellinusest – pre-T) kemotaktilise stiimuli ajel veenulite kaudu.

Enamik infomaterjali T-rakkude koolitamisest ja apoptoosist tüümuses pärineb laborihiirtelt.

Vanemas eas suureneb mälu-T-rakkude hulk.

Tüümuse parenhüümist pärinevad ja on kohal kindlat tüüpi tüümuse loomulikud tappurrakud (thymic natural killer cells).

Kõik tüümuse rakud on võimelised tsütokiine komplekteerima ja vabastama. Nii vabastavad tüümuse strooma rakud mitmeid lühiajalisi valgulisi signaalmolekule interleukiine, näiteks IL-7, mis osaleb thymopoiesis ja aitab kaasa tümotsüütide paljunemisele ning ellujäämisele.

Vahel, peamiselt T-rakkude selektsiooniga (koolitamisega) seotud funktsioonide kaudu, võidakse tüümuse mikrokeskkonnana kirjeldada ka tüümuse kihnu, koore või säsi mikrokeskkonda.

Tüümuse kirurgia

Tüümuse kirurgia all ei peeta Eestis silmas eraldi teadusharu, üldkirurgia eriala, keskust ega ka Euroopa standarditele vastava kõrgema etapi spetsialiseeritud osakonda.

Eestis tehakse tüümuse kirurgilisi operatsioone näiteks Tartu Ülikooli Kliinikumi torakaalkirurgia osakonnas.

Eestis kehtivad järgmised tüümuseoperatsioonide NCSP koodid:

  • GEC00 Tüümuse biopsia (Biopsy of thymus)
  • GEC03 Mediastinoskoopiline tüümuse biopsia (Mediastinoscopic biopsy of thymus)
  • GEC10 Transtservikaalne tüümuse resektsioon (Transcervical resection of thymus)
  • GEC13 Transsternaalne tüümuse resektsioon (Transsternal resection of thymus)
  • GEC14 Tüümuse torakoskoopiline resektsioon (Thoracoscopic resection of thymus)
  • GEC16 Mediastinoskoopiline tüümuse resektsioon (Mediastinoscopic resection of thymus)
  • GEC20 Transtservikaalne tümektoomia (Transcervical thymectomy)
  • GEC23 Transsternaalne tümektoomia (Transsternal thymectomy)
  • GEC24 Torakoskoopiline tümektoomia (Thoracoscopic thymectomy)
  • GEC26 Mediastinoskoopiline tümektoomia (Mediastinoscopic thymectomy)
  • GEC93 Muu mediastinoskoopiline operatsioon tüümusel (Other mediastinoscopic operation on thymus)
  • GEC96 Muu operatsioon tüümusel (Other operation on thymus)
  • GEC97 Muu torakoskoopiline operatsioon tüümusel (Other thoracoscopic operation on thymus)

Tümektoomia

Harkelundieemaldus on invasiivne kirurgiline ravimeetod.

Kasutatakse nn lahtise operatsiooni meetodit (transsternal), mille teostamiseks tehakse pikk nahalõige rinnaku piirkonda ja ligipääsuks eesmisele keskseinandile läbitakse sternum.

Eksperimentaalsete tümektoomiate poolest teatakse Restelli't (1845), kes kirurgiliselt eemaldas tüümuse 98 katseloomal – lammastel, koertel ja vasikatel – kõik nad surid.

Abelous ja Billard, Matti, Klose ja Vogt on kinnitanud, et tüümuse eemaldamisele järgnevad patoloogilised muutused mis kulmineeruvad surmaga.

Esimese tüümuselõikuse inimesel tegi (ebaõnnestunult) 1896. aastal Saksa kirurg Ludwig Rehn (1849–1930).

20. sajandi algusaastatel oli neonataalne tümektoomiaimikute ja väikelaste tümo-lümfaatilise seisundi ja tüümuse astma puhul üsna levinud.

Inglismaal teostas esimese tümektoomia Sir Geoffrey Keynes 1942. aastal New End Hospitalis.

1960. aastatel seostati tüümuse ekstirpatsiooniga loomadel rasvumist, pastoossuse staadiumi, üldist loidust, mahajäämust kasvus, rahhiiditaolist seisundit, lihaste atroofiat ja kahheksiat.

Tänapäeval vastsündinute ja väikelaste avatud südamelõikuse operatsioonide käigus tüümus tavaliselt eemaldatakse, et ta ei segaks ja/või raskendaks operatsiooni läbiviimist.

Noores eas tümektoomia läbinud naistel ei toimu tõenäoliselt talitlevate munasarjade arengut, paljud neist jäävad sigimisvõimetuks.

Tümektoomia järel areneb inimestel välja immuundefitsiit.

Robotjuhitav tümektoomia

Raskekujulise müasteenia ravis võidakse kirurgiaroboti olemasolul kasutada Da Vinci robotsüsteemiga juhitavat tümektoomiat.

Videotorakoskoopiline tümektoomia

Tartu Ülikooli Kliinikumi torakaalkirurgia osakonnas kasutatakse müasteeniahaigete raviks uudset meetodit videotorakoskoopilist tümektoomiat (VATS).

Tüümuse siirdamine

Tüümuse siirdamine on elundi siirdamise vorm, mille korral inimese tüümusekude (või osa tüümusest) invasiivse kirurgilise operatsiooni käigus elundidoonorilt elundisaajale siirdatakse. Siirdatavaid inimese tüümusi teistelt inimestelt spetsiaalselt välja ei lõigata, siirdamiseks kasutatakse vastsündinutelt ja või väikelastelt näiteks avatud südamelõikuse ajal eemaldatud elundeid.

Tüümuse siirdamise järgselt võib välja kujuneda autoimmuunne sündroom.

Kliiniline radioloogia

Rindkere elundite patoloogia radiodiagnostika

Tüümuse piltdiagnostika

Tüümuse patoloogia kahtluse korral võidakse, tuvastamaks tüümuse lesioone ja/või haiguslikke seisundeid, kasutada mitmesuguseid radioloogilisi uuringuid (piltdiagnostika).

Esmase diagnostika vahendina võidakse uuritavale teha kas tüümuse ultraheli, rindkere röntgenipilt (Röntgeniülesvõte rindkere piirkonnast (üks ülesvõte) 9,12 eurot), rindkere kompuutertomograafia või rindkere magnetresonantstomograafia.

Tüümuse lesioonide korral võidakse leviku ja/või ravivastusele kinnituse saamiseks teha – PET/KT jm.

Tüümus rindkere röntgenipildil
Röntgenipilt: normaalne tüümus noorel lapsel

Tüümuse kujutis rindkere röntgenipildil on varieeruv nii indiviiditi kui ka samal indiviidil – varieeruvad nii kuju, suurus, ka asukoht (ektoopiline tüümus) lesioonide kujutised kui ka tihedus jm.

Loote tüümuse ultraheliuuringud

Naistel võidakse raseduse ajal teostada loote ultraheliuuringuid, mille käigus võidakse vajadusel vastava aparaadi (näiteks värvi-doppler-ehhokardiograaf) kuvarile kuvada ja mõõta ka loote tüümust.

1989. aastal demonstreerisid Felker jt, et tüümust saab vastavate seadmete ja tarkvara ning spetsialistide olemasolul kuvada ja uurida.

Tüümuse kiiritusravi

20. sajandil seostati Ameerika Ühendriikides tüümusega tervet rida haiguslikke seisundeid, mille raviks kasutati kiiritusravi.

1920. aastatel kasutati tüümuse kiiritamist ka psoriaasi ravis.

1945. aastal nimetas ameerika radioloog John Caffey tüümuse kiiritamist, sõltumata vanusest, irratsionaalseks protseduuriks.

Lapseeas saadud tüümuse kiiritusravi võib indutseerida kiirgusest põhjustatud kilpnäärmevähi teket.

Termin

Ladinakeelsed nimetused on corpus thymicumcorpus thymianum ja glandula thymus.

Etümoloogia pole päris selge ja kindlad kokkulepped sõna päritolu kohta ilmselt puuduvad.

Kreeka]sõna θύμος 'thymos' pidavat osade allikate andmetel tähendama nii suitsutaolisust ja vaimu kui ka hinge ja julgust.

Ladinakeelset nimetust thymus seostatakse tüümianitaimega.

Tüümuse varasem eestikeelne nimetus oli harknääre. Termin seostub arvatavasti ühe osaga teadlastest, kes varem kirjeldasid tüümuse funktsioone (mis olid suuresti teadmata) sarnaselt teiste näärmete funktsioonidega.

Harkelund on kantud kehtivasse rahvusvahelisse inimese anatoomia standardisse Terminologia Anatomica ja inimese tsütoloogia ja histoloogia standardsõnavarasse Terminologia Histologica ning inimese embrüonaalse (looteea) arengustaadiumi standardsõnavarasse Terminologia Embryologica-sse.

Tüümuse MeSH number on: A10.549.750.

teisipäev, 19. august 2025

Psoriaatsed naastud

Psoriaatilised naastud ehk psoriaasilesioonid ehk psoriaatilised nahalaigud (ka psoriaasinaastudpsoriaasi laigudpsoriaatilised nahalesioonid) on erinevate psoriaasivormide korral esinevad iseloomulikud käesoleval ajal palja silmaga nähtavad varieeruva morfoloogiaga nahalesioonid, mis on aluseks psoriaasi diagnoosimisel ja ravis.

Psoriaasile on omane selgelt piirdunud laik või laigud pea kõikjal kehal, mis on ümbritsevast nahast veidi kõrgem, sellel võib esineda kuivanud vere värvi piirdeid ja see on kaetud hõbevalge ketuga.

Kuid psoriaatilised naastud võivad olla ka maakaardilaadsed kujundid, väikesed ketendavad vistrikud, väiksed mädavillid jne.

Psoriaatilised lesioonid paiknevad nahal peamiselt küünarnukkidepõlvedesäärte, ja ristluu piirkonnas aga ka juustega kaetud peanahal (peanaha psoriaas) ja küüntel (küünepsoriaas).

Psoriaasikolded võivad laatuda ning katta suuremaid pindu nii jäsemetel kui kehatüvel.

Genitaalpsoriaas võib avalduda nii väikelastel, kui ka naistel ja meestel.

Lesioonis tekib põletik, millele järgneb epidermaalne hüperproliferatsioon.

Autonoomse närvisüsteemi aktivatsiooni tulemusel suureneb naha neuropeptiidide (näiteks β-endorfiin) tase.

Histoloogiliselt on psoriaasinaastudes tuvastatud, tõenäoliselt segmenttuumaliste leukotsüütide tekitatud, mikroabtsessid (Munro mikroabstsessid ja Kogoj' spongiformsed pustulid) sarvkihis ja epidermises.

Vahel nimetatakse psoriaasilesioone ka psoriaatiliseks nahaks aga see ei ole ilmselt päris täpne kuna psoriaatikutel on ka lesioonide kõrval olevas nahas tuvastatud muutusi mis eristavad seda normaalseks peetavast nahast.

Patoanatoomia ja füsioloogia

Psoriaatilistes naastudes on tuvastatud T-abistajarakke (Th1 rakud: Th 1 ja Tc1), Langerhansi rakkeneutrofiile ja makrofaage.

Psoriaatilisi naastusid iseloomustavad ka parakeratoos, leukotsüütide kogumid, T-lümfotsüütide kogumid, uussoonestumine (hoogustunud kapillaaride teke dermise papillides), Munro mikroabstsessid (ka Munro-Saboureau mikroabstsessid) jpm.

Psoriaasikollete uuringute ja mudelite põhjal omistatakse lesioonis mitmeid kõrvalekaldeid, normaalse dermise toimimisega võrreldes, kaasasündinud ja adaptiivse immuunkaitse mehhanismide käivitumine ja nende tasakaalustamine psoriaasilesioonides (ka psoriaasihaigete perfeerses veres), on tuvastatud, et naha T-abistajarakkude (CD4+ Th1) populatsioon on võrreldes tsütotoksilised T-rakkude tüübi (Tc1) omaga vähemuses.

Immunofluorestsents-värvimist kasutades tuvastati teatud T-rakkude (CD4+ CD25+, CD4+ CD45RO+, CD8+ CD25+ ja CD8+ CD45RO+ rakud) aktivatsiooni dermises ja epidermises.

Psoriaasilesioonides paiknevad psoriaatilised keratinotsüüdid ekspresseerivad rohkelt närvirakkude kasvufaktorit.

Mikrobioota

Psoriaasilesioonis tuvastatud bakteri perekonnadActinobacteriaFirmicytesProteobacteriaBacterioidesCyanobacteria jt.

esmaspäev, 18. august 2025

Langerhansi rakud

Langerhansi rakud on paljude imetajate epidermise sarvkihis ja suueesnaha ning tupe limaskestas ja tüümuses elunevad suuretuumalised paljude haaradega dendriitrakud.

Langerhansi rakkude olemasolu, areng, anatoomia, morfoloogia, histoloogia, mutatsioonid, rakud ja molekulid ning apoptoos ja patoloogia võivad erineda nii liigiti, indiviiditi kui ka arenguastmeti.

Langerhansi rakud pärinevad tõenäoliselt luuüdist.

Langerhansi rakkude ülesanded sarnanevad osalt makrofaagide omadega: antikehade kogumine, töötlemine ja antigeenide esitlemine lümfotsüütidele. Langerhansi rakud osalevad T-rakkude vahendusel immuunvastuses.

Langerhansi rakud võivad liikuda lümfisõlme.

Langerhansi rakud liigitatakse lümfoid(-immuun)süsteemi.

Langerhansi rakud võivad toimida HI-viirusega nakatumisel (sugulisel teel) reservuaarina ja esitleda HIV-antigeene CD4 retseptoritele, transportimaks neid CD4+ lümfotsüütidesse.

Langerhansi rakke seostatakse Langerhansi rakkude histiotsütoosiga ja allergilise kontaktdermatiidiga.

Langerhansi rakkude migratsioonihäiretega seostatakse ka psoriaasi.

Langerhansi rakud on nimetatud nende avastaja Saksa arsti ja patoloogi Paul Langerhansi (1847–1888) auks. Paul Langerhans avastas Langerhansi rakud 1868. aastal (olles 21-aastane arstitudeng) ja liigitas need närvikoe struktuuride hulka kuuluvaiks.

Teadusuuringutes

Mount Sinai Hospitali ja Mount Sinai School of Medicine'i uurijate meeskonna Science Dailys 24. novembril 2015 avaldatud artikkel pakub välja rakkude võimaliku mehhanismi kiiritusravi vastu võitlemiseks, esialgu küll nn hiiremudeli põhjal.

Uurijad leidsid, et suunates kiiritusravi nahas paljunevatele maliigsetele kasvajarakkudele aktiveeruvad nahas paiknevad spetsiifilised immuunrakud – dermaalsed Langerhansi rakud.

Langerhansi rakud on katsetes näidanud oma erakordset võimet parandada ioniseeriva kiirguse mõjul DNA-le tekkida võivad "rikked". Rakud võimaldavad DNA-l talitleda nii, et on tagatud kiiritusravi vastane resistentsus. Ka võivad nad tõenäoliselt kutsuda esile immuunvastuseid, mis kulmineeruvad nahavähiga nagu melanoom, tagamaks molekulaartasandil resistentsuse edasistele raviprotseduuridele. Uurijate arvates liiguvad Langerhansi rakud naha kahjustamisel ioniseeriva kiirgusega näiteks lähimatesse lümfisõlmedesse ja suheldes molekulaartasandil teiste immuunrakkude populatsioonidega, komplekteerivad regulatoorsed T-lümfotsüüdid (esmased populatsioonid küpsevad tüümusesimmuunsüsteemi talitlust pärssivate omadustega rakupopulatsioone, kes infiltreeruvad kiiritust saanud kasvajasse ja "katavad" selle kaitseks teiste immuunsüsteemi spetsiifiliste rakkude toime eest.

reede, 15. august 2025

Melanotsüüt

Melanotsüüdiks (ladina melanocytus) nimetatakse paljudel selgroogsetel loomadel peamiselt epidermise osades paiknevat spetsialiseerunud pigmendirakku.

Melanotsüüdid mõjutavad ka juuste ja naha värvust.

Melanotsüüdid arenevad ja migreeruvad inimese lootel embrüonaalses eluetapis crista neuralis'es melanoblastidest.

Sihtkohta jõudnud melanotsüüdid hakkavad melanosoomi, mille sees sünteesitakse melaniini, komplekteerima.

Melanotsüüdid paiknevad epidermise stratum basale kihis ja on tihedalt seotud keratinotsüütide ja Langerhansi rakkudega.

Umbes iga kümnes basaalkihi rakkudest on melanotsüüt, lisaks on melanotsüüdid ka karvafolliikuliteslimaskestadel ja silmades.

Ka südames paiknevad melanotsüütidesarnased rakud, kuid nende ülesanded pole selged, need võivad osaleda südame rütmihäirete vallandamisel.

Roomajatel

Madudel

Madudel on melanotsüüte tuvastatud peamiselt nahas. Melanotsüüdid liigitatakse asukoha järgi: pärisnahas paiknevad naha melanotsüüdid, epidermises paiknevad epidermaalsed melanotsüüdid ja nahaalused melanotsüüdid, mis paiknevad sügaval nahas ja moodustavad võrgustiku. Kõik nimetatud rakud sisaldavad melaniini sünteesivaid osiseid. Lisaks sisaldavad melaniiniladestusi ka mõningate inimeste suhtes mürkmadudeks liigitatud madude, näiteks pärisrästiklaste ja lõgismadulaste peas paiknevad mürginäärmeid katvad koed, lihased kui ka mürginäärmedSugukonda Colubridae liigitatud madudel melaniiniladestusiDuvernoy näärmetes ei ole tuvastatud.

Imetajatel

Melanotsüütide paigutus nahas

Patoloogia

Vitiliigo

Next.svg Mitmetel selgroogsetel loomadel (näiteks inimestel, kassidelpühvlitelhobustelsigadel ja koertel) põhjustab epidermaalsete melanotsüütide hävimine tõenäoliselt vitiliigot.

Melanoom

Next.svg Melanoomi patogenees ja ravi on siiani lõpuni uurimata. Mitmed melanotsüütide arengus osalevaid geene on tuvastatud ka maliignetes melanotsüütides, mida on tuvastatud melanoomi põdevate inimeste kasvajakolletes.

Inimeste melanoomi rakuliinide põhjal arvatakse, et melanoomi tekkes mängivad rolli ka rakkude eritatavad kasvufaktorid nagu tuumornekroosifaktor alfatuumornekroosifaktor beetanärvikasvufaktor (NGF) jpt.

Vogt–Koyanagi–Harada sündroom

Next.svg Vogt–Koyanagi–Harada sündroom (VKH sündroom) on eeldatavasti autoimmuunse geneesiga haigus, mida iseloomustab krooniline, kahepoolne, difuusne granulomatoosne uveiit ja ka naha, neuroloogilised ja kuulmishäired.

VKH sündroom on immuunvahendatud haigus, arvatakse, et siin mängivad rolli T-abistajarakud, mis vahendavad autoimmuunreaktsioone melanotsüütide vastu nahas, silmamunasoonkestas, kesnärvisüsteemis ja sisekõrvas mille tagajärjel hävitatakse melanotsüüdid.

Ravimindutseeritud patoloogia

Dopamiin

Rakukultuuridega seotud uuringud näitavad, et dopamiin indutseerib melanotüütide apoptoosi.

neljapäev, 14. august 2025

Kemokiinid

Kemokiinid (ka kemotaktsed tsütokiinidinglise keeles chemokines) on selgroogsete loomade mitmete tuumaga rakkude poolt (eosinofiilidbasofiilidneutrofiilidmakrofaagid, endoteelirakud, keratinotsüüdidfibroblastid jt) komplekteeritavate ja vabastatavate selliste väikesemolekuliliste looduslike valkude perekond, mis vahendavad lühiajaliselt ja lokaalselt erinevaid bioloogilisi toimeid ja rakkudevahelist informatsiooni seondudes G-valguga seotud retseptoreid omavate rakkude membraaniga ja aktiveerides ensüümi fosfolipaas C.

Kemokiinide sarnaseid valke on tuvastatud teatud bakteritel ja viirustel.

Kemokiinide funktsiooniks on mitmete rakkude sundviimine nakkus- või põletikukoldesse, lisaks reguleerivad kemokiinid lümfikudede ja närvisüsteemi arengut ja leukotsüütide migratsiooni, küpsemist, aktivatsiooni jm.

Varem on neid liigitatud α,β,γ ja δ- rühma, tänapäeval liigitatakse aga sellisteks perekondadeks nagu CC- (β-kemokiinid), CXC- (α-kemokiinid), CX3C- (δ- kemokiinid) ja C- (γ-kemokiinid) perekond.

Kemokiinid liigitatakse tsütokiinide hulka.

Kemokiinid ja kemokiiniretseptorid avastati leukotsüütide signaalmolekulidena, mille ülesandeks peetakse lümfirakkude sundliikumist keemiliste ärritite toimel.


Patoloogia

Kemokiinide roll on ebaselge, kuna neid seostatakse ka paljude haiguslike seisunditega, nagu allergiaateroskleroos, mitmed infektsioonhaigused ja põletikulised haigused (kemoatraktant põletikutsütokiinidele) ning kasvajad (kemokiinid kiirendavad angiogeneesi).

Ebola viirushaigus

Next.svg Gabonis ja Kongo Vabariigis 1996 ja 2003 aset leidnud Ebola viiruse põhjustatud Ebola viirushaiguse puhangute ajal kogutud vereproovide in vitro uuringute alusel seostatakse surmlõppega põletikutsütokiinide (IL-1β, IL-1RA, IL-6, IL-8, IL-15 ja IL-16) ning kemokiinide ja kasvufaktorite (MIP-1α, MIP-1β, MCP-1, M-CSF, MIF, IP-10, GRO-α ja eotaxinhüpersekretsiooni.

kolmapäev, 13. august 2025

Hüpertsütokineemia

Hüpertsütokineemia (ladina hypercytokinaemia), ka tsütokiinitorm (inglise cytokine stormhispaania tormenta de citocinasvene цитокиновый шторм), on immuunsüsteemi massiivne, potentsiaalselt letaalne süsteemne põletikuline reaktsioon patogeenile, mis seisneb immuunrakkude aktiveerimises tsütokiinide poolt ja põletikukolde tekkimises ja levimises. Immuunvastusena aktiveeritud immuunrakud, mis on füsioloogilistest piiridest väljunud, vallandavad omakorda uue tsütokiinide ja mitmete teiste biokeemiliste vahendajaainete hulga.

Hüpertsütokineemia täpseid mehhanisme siiani ei tunta. Arvatakse, et teatud põletiktsütokiinide komplekteerimisel mängib rolli reniin-angiotensiin süsteem, mõned patogeenid suudavad end immuunsüsteemi eest varjata ja teatud aja märkamatult paljuneda, teised aga on võimelised immuunsüsteemi hüperstimulatsiooni põhjustama.

Protsess ja sellega kaasnev ei allu teatud ajavahemikul homöostaasi seisundile ning loetakse, et sellisena ei täida peremeesorganismi kaitsefunktsioone – seetõttu seostatakse seda immunopatoloogiaga.

Erinevatel põhjustel (sh ravimid, kirurgilised operatsioonid, viirusedbakterid ja või patogeenide 'kooselu' Candida albicans ja Staphylococcus aureus jpt) käivitunud põletikku aktiveeriv reaktsioon põhjustab põletikukoldes kudede hävimise, ühtaegu kannavad biokeemilised signaalmolekulid põletikusignaalid naaberkudedele põhjustades elundite töö häirumise ja kiirelt edasi kandudes võtavad need süsteemse iseloomu, haarates kogu organismi ja olenevalt haigustekitajast võivad põhjustada kas sepsist või isegi surma.

Hüpertsütokineemia korral võib kliiniline pilt erinevate haiguslike seisundite korral erineda.

Hüpertsütokineemia korral vabastatakse peremeesorganismi erinevate rakkude poolt mitmeid biokeemilisi vahendajaid nagu vabad radikaalid, koagulatsiooni faktorid, tsütokiinid jpt. Nii täheldatakse patsientide vereseerumis nii põletikutsütokiinide (TNF-α, IL-1 ja IL-6) kui põletikuvastaste tsütokiinide (IL-10) hulga suurenemist.

Viiruslik

A-gripiviiruse infektsioon

A-gripiviiruse infektsiooni korral on gripihaigete vereseerumis tuvastatud tsütokiinide ja glükoproteiinide taseme tõus, nagu IL-1β, IL-1Ra, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-13, IL-17, G-CSF, GM-CSF, IFN-α, IFN-β, IFN-γ, TNF-α, IP-10, MCP-1, MIP-1α, MIP-1β jt.

Linnugripp inimestel

Next.svg Inimestel põhjustab linnugrippi A-tüüpi gripiviiruse alatüüp H5N1. Viirus kutsub esile immuunvastusena tsütokiinide düsregulatsiooni põhjustades seega lümfoid(-immuun)süsteemi ülereageerimise ('äkkrünnaku') – hüpertsütokineemia, mille korral sünteesitakse ja eritatakse suurel hulgal põletikutsütokiine ja kemokiine, olulisemad neist TNF-alfa, IL-6 ja IFN-gamma.

Hüperstsütokineemiaga linnugripi korral seostatakse potentsiaaselt eluohtlikke kliinilisi sümptomeid ja seisundeid, nagu kopsuödeem, akuutne bronhopneumooniaalveolaarne verejookshemofagotsütaarne sündroom ja täiskasvanu respiratoorse distressi sündroom, mille kutsuvad esile talitlevate kudede nekroos ja hävinemine.

Ebola viirushaiguse immunopatoloogia

Next.svg Ebolaviirus põhjustab tõenäoliselt immuunsüsteemi ja soonte endoteeli düsregulatsiooni, mille täpseid mehhanisme praegu veel ei tunta.

Uurijad on tuvastanud, et Ebola viiruse valgud VP24 ja VP35 blokeerivad peremeesorganismi interferooni (IFN)-alfa/beeta sünteesi ja signaali edastamist IFN-alfa/beeta ja IFN-gamma retseptoritele ning takistavad bioloogiliste vahendajaainete signaalide saatmist rakutuuma ja osalevad seeläbi kaasasündinud immuunsuse inhibeerimises.

Ebolaviiruste peamisteks märklaud-rakkudeks on veresoonte ja elundite sisepinna endoteelirakud (endoteel), parenhüüm, mononukleaarsed fagotsüüdidmaksarakuddendriitrakud, ringlevad monotsüüdid.

Ebola viirus paljuneb edukalt dendriitrakkudes, ilma et vabastataks tsütokiine. Infitseerunud dendriitrakkude küpsemine ebaõnnestub ja ebaõnnestub ka immuunvastus, kuna ei esitleta antigeene NK-T- ja B-rakkudele, aidates kaasa Ebola-viirusnakkuse levikule organismis.

Arvatakse, et need rakud transpordivad viiruseosakesed lümfisoonte ja lümfiga edasi lümfisõlmedesse ja teistesse elunditesse. Haiguse progresseerudes, kui nakatuvad monotsüüdid ja makrofaagide, vabastatakse märkimisväärsetes kogustes tsütokiinelämmastikoksiidi jpt aineid.

Tsütokiinide (nii peremeesorganismi kui viiruse eritatavad virokiinid) vabanemist seostatakse palaviku ja põletikuliste protsessidega. Surmlõppega seostatakse hüpertsütokineemiat – mida osutavad tsütokiinide IFN-γ, IFN-α, IL-2, IL-10 ja tuumornekroosifaktor alfa kõrgenenud tase ja nimetatud seisund kahjustab maksa ning neere.

Gabonis ja Kongo Vabariigis 1996 ja 2003 aset leidnud Ebola viirushaiguse puhangute ajal kogutud vereproovide in vitro uuringute põhjal seostatakse surmlõppega põletikutsütokiinide (IL-1β, IL-1RA, IL-6, IL-8, IL-15 ja IL-16) ning kemokiinide ja kasvufaktorite (MIP-1α, MIP-1β, MCP-1, M-CSF, MIF, IP-10, GRO-α ja eotaxinhüpersekretsiooni.

Rõuged

Next.svg Rõugeviiruste põhjustatud rõugete immunopatoloogiat seostatakse hüpertsütokineemiaga.

Bakteriaalne

Tulareemia

Next.svg Gramnegatiivse bakteri Francisella tularensis'e põhjustatud tulereemia korral võivad kohale 'rullunud' kemokiinid ja teised vabastatud biokeemilised signaalained signaliseerida vajadusest haiguskoldesse lümfotsüüte juurde transportida ja indutseerida hüpertsütokineemiat, mis võib kaitse- ja kontrollmehhanismide töö mitte taastumisel, surmaga lõppeda.

Bioloogiline ravi

Next.svg Erinevate haiguste (reumatoidartriitpahaloomulised kasvajad jpt) bioloogilises ravis kasutavate inimeste bioloogiliste ravimite (näiteks monoklonaalsed antikehad, lahustuv tuumorinekroosifaktor alfa retseptor jpt) immuunteraapia tulemusel tekkiv potentsiaalselt eluohtlik 'tsütokiinide tormi' laadne seisund ehk tsütokiinimürgistus (või ka tsütokiiniülitundlikkus) kannab nimetust cytokine release syndrome (CRS).

Bioloogiliste komponentidega rakuteraapiad, nagu näiteks 'T-rakuteraapia' (inglise keeles T-cell treatments), on tõenäoliselt väga võimekad, kuna enamik patsiente kannatab ravi tulemusel nn tsütokiinitundlikkuse käes, see on molekulide koopereerumine vastustamaks 'vähirakkude rünnet', selle tulemusel on surnud ka vähemalt seitse patsienti.

Nimi

Termin võeti kasutusele aastal 1993 seoses peremehe siiriku vastase reaktsiooniga (graft-versus-host disease, GVDH)