Otsing sellest blogist

UUS!!!

Telomeraas

Telomeraas  on ribonukleoproteiinist  ensüüm , mis lisab telomeerse järjestuse TTAGGG eukarüootsete  kromosoomide   DNA  3'-otstesse. TE...

esmaspäev, 10. veebruar 2025

Vesiilikul

Vesiikul on suhteliselt väike tavaliselt veega täidetud põieke raku tsütoplasmas. Vesiikulid on rakusisusest eraldatud rakumembraaniga. Vesiikulite ülesanne on ainete transport või säilitamine raku sees.

Fosfolipiidse kaksikkihiga ümbritsetud vesiikul vesilahuses

Vesiikulid osalevad raku elutegevuseks vajalike ainete, näiteks vitamiinidelipiidide, kolesterooli, raua ja makromolekulide transpordis rakus. Vesiikul on üldjuhul ümbritsetud fosfolipiidse kaksikkihiga nii, et membraani südamikku on koondunud hüdrofoobsed rasvhappeahelad. Hüdrofiilsed pead paiknevad vesiikuli tsentri ja tsütosooli poolel.

Vesiikulid võivad moodustuda rakus loomulikult, näiteks endotsütoosi käigus, kuid neid saab tekitada laboris kunstlikult. Sel viisil loodud vesiikuleid kutsutakse liposoomideks ning neid kasutatakse mudelmembraanidena eksperimentaalseteks uuringuteks. [1] Vesiikulite membraani koostis on sama mis raku plasmamembraanil. Seetõttu saavad vesiikulid liituda nii raku plasmamembraani kui ka erinevate organellide membraanidega. Ekso- ja endotsütoosi puhul eraldatakse vastavad makromolekulid vesiikulisse ning nad ei segune teiste tsütoplasmas olevate molekulidega. Vesiikulid võivad kuuluda näiteks Golgi aparaadi koosseisu.

Vesiikuli funktsioon sõltub selle sisaldistest. Iga vesiikul on määratud ühinema ainult kindla membraaniga. Tulemuseks on makromolekulide suunatud liikumine raku sise- ja väliskeskkonna vahel. Sarnane protsess toimub ka transportvesiikulite vahendatud karedal endoplasmaatilisel retiikulumil ehk ER-il sünteesitud valkude liikumisel Golgi kompleksi. Valke sisaldav vesiikul eraldub ühest kompartmendist ja ühineb seejärel teise kompartmendi membraaniga. [2] Eukarüootses rakus toimub pidevalt vesiikulite eraldumine ühelt membraanilt ning liitumine mõne teise membraaniga. Vesiikulid kannavad seejuures kaasas membraanide struktuurses koostises olevaid komponente ja vees lahustuvaid molekule. Kogu selline membraansete komponentide vaheldumine kulgeb mööda kõrgelt organiseerunud ning kindla suunaga molekulaarseid radu, mis lubavad rakul modelleerida plasmamembraani.

Kogu selle protsessi juures ei tohi raku pindala ning ruumala muutuda. Seetõttu on ekso- ja endotsütoos tasakaalus: endotsütoosi teel membraani materjal sopistub, eksotsütoosi teel saab ta selle tagasi. Enamikul rakkudel tekivad kaetud vesiikulid juhuslikes kohtades, nii et membraani sopistumine toimub üle terve raku pinna. Raku ekso- ja endotsütoosi rajad on ruumiliselt lahutatud.

Vesiikulite tüübid

Iga vesiikul peab olema selektiivne – see peab haarama endasse õiged molekulid ja peab liituma õige sihtmembraaniga, näiteks ei tohi vesiikul, mis kannab aineid Golgi kompleksist plasmamembraanile, haarata kaasa aineid, mis peavad jääma Golgi kompleksi koostisse. Lisaks peab see vesiikul liituma ainult plasmamembraaniga ja mitte ühegi teise organelliga. Vastavalt ekso- ja endotsütoosile jaotatakse vesiikulid järgmiselt: transportvesiikulid ja sekretoorsed vesiikulid.

Transportvesiikulid

Transportvesiikulid osalevad ainete transportimises erinevate organellide vahel raku sees, näiteks transpordivad vesiikulid valke karedapinnaliselt ER-ilt Golgi kompleksi.

Sekretoorsed vesiikulid

Sekretoorsed vesiikulid osalevad ainete transpordis raku sisekeskkonnast väliskeskkonda. Need ained on valdavalt raku elutegevuse jääkproduktid, mida ei ole rakus enam vaja. Mõned eukarüootsed rakud on spetsialiseerunud eritama keemilisi aineid. Sel juhul kogutakse need aineid sekretoorsetesse vesiikulitessse, mida rakk eritab alles vastusena väliskeskkonna tugevale ärritusele. Näiteks kasutavad sekretoorseid vesiikuleid närvirakud, mis vastusena aksonist saadud signaalile vallandavad vesiikulite abil neurotransmittereid.

Vesiikulite moodustumine ja transport

Kaetud vesiikulite pungumine

Pinotsütoos skemaatiliselt

Enamik transportvesiikuleid moodustub plasmamembraani spetsiaalsest osast, mis on kaetud valkudega. Pinotsütootilised vesiikulid moodustuvad plasmamembraani piirkonnas, mida nimetatakse kaetud lohuks (coated-pit). See piirkond sopistub ja moodustub nn kaetud vesiikul (coated vesicle). Kaetud vesiikuli eluiga on lühike: sekundite jooksul pärast lähtemembraani küljest vabanemist kaob talt kate ja ta on valmis ühinema endosoomiga.

"Kattel" on kaks põhilist funktsiooni:

  1. koondab spetsiaalsed valgud, mis aitavad vesiikulil membraanist eralduda;
  2. vormib vesiikuli.

Kirjeldatud on kolme eri tüüpi vesiikulite "katteid", mis määravad liikumise raja organellide vahel:

Katte tüüpOrganell
Klatriinplasmamembraan -> Golgi kompleks
COPIGolgi kompleks -> ER
COPIIER -> Golgi kompleks

Klatriin on proteiin, mis koosneb kolmest pikast ja kolmest lühikesest polüpeptiidahelast. Need ahelad moodustavad omakorda triskeletid, mis assambleeruvad heksagonaalsete võredena ümber vesiikuli. Vesiikulite moodustumisel mängivad tähtsat rolli retseptormolekulid, mis paiknevad klatriinkatte ja lipiidse membraani vahel. Retseptorid seovad klatriini membraani külge ja püüavad kinni transmembraansed valgud. Viimaste hulka kuuluvad ka spetsiifilised retseptormolekulid, millega ümbritsevas keskkonnas olev molekul kõigepealt seostub. Näiteks trans-Golgi membraanis paiknev mannoos-6-fosfaadi retseptor tunneb ära lüsosomaalsed ensüümid, mis pakitakse eraldi vesiikulisse ja saadetakse endosoomiCis-Golgis tunneb retseptor ära valgud, mis kannavad KDEL järjestust ning need saadetakse tagasi ER-i. Ajal, mil vesiikul kasvab, moodustavad valgud (näiteks dünamiin) ümber vesiikuli kaela (osa, mis on ühenduses lähtemembraaniga) rõnga, mis eemaldab vesiikuli membraani küljest. Dünamiin seostub teiste valkudega, mis moonutavad koos lipiide modifitseerivate ensüümidega plasmamembraani. Hetkel, mil vesiikul eemaldub lähtemembraanist, laguneb ka klatriinkest.

Vesiikuli liitumine sihtmembraaniga

Tsütoplasmas liigub korraga väga palju vesiikuleid. Seega püsib oht, et mõni neist võib liituda vale membraaniga enne, kui ta leiab õige. Kõik vesiikulid peavad olema spetsiifilised, et nad tunneksid ära õige membraani, millega liituda. See on tagatud vesiikuli pinnal olevate markeritega, mis tuvastavad neid vastavalt päritolule ja koostisele. Need markerid seonduvad konkreetsete retseptoritega sihtmembraanis.

Kogu see protsess sõltub kahest valgutüübist:

  1. Rab-valkudest – vahendavad vesiikuli sihtmembraaniga ühinemist
  2. SNARE-valkudest – vahendavad vesiikuli liitumist sihtmembraaniga ja transporditava aine vabastamist

Rab-valkude perekonda kuulub enam kui 60 liiget. Iga Rab-valk seondub ühe või enama organelli membraaniga ja igal organellil on tsütosoolipoolses alas vähemalt üks Rab-valk. Rab-valgud on GTP-st sõltuvad. GDPga seondunult on Rab-valgud inaktiivsed ja seostunud mõne teise valguga, mis hoiab Rab-valku tsütosoolis lahustatult. GTPga seondunult on Rab aga aktiivne ning tihedalt seondunud organelli või vesiikuli membraaniga. Aktiivses olekus Rab-valk seostub Rab-efektoriga, mis vahendab vesiikuli transporti, membraanide ühendumist ja liitumist. Üks Rab-valk võib seonduda mitme erineva efektoriga.

Iga Rab-valk seondub konkreetse organelliga

Rab-valkOrganell
Rab1ER ja Golgi kompleks
Rab2cis-Golgi kompleks
Rab3Asünaptilised vesiikulid
Rab4/Rab11endosoomid
Rab5Aplasmamembraan, klatriiniga kaetud vesiikulid
Rab5Cvarajased endosoomid
Rab6trans-Golgi tsiternid
Rab7hilised endosoomid
Rab8varajased endosoomid
Rab9hilised endosoomid, trans-Golgi võrgustik

SNARE-valgud katalüüsivad vesiikuli liitumist membraaniga vesikulaarsel transpordil. Nad aitavad kaasa vesiikuli spetsiifilisusele, sest hoolitsevad selle eest, et konkreetne vesiikul liituks õige membraaniga. SNARE perekonda kuulub loomadel teadaolevalt vähemalt 35 liiki valke, millest igaüks seondub spetsiifilise organelliga. Transmembraansed SNARE-valgud on komplementaarsed – vSNAREd vesiikuli ja t-SNAREd organelli membraanis. vSNARE on üheahelaline polüpeptiid ja t-SNARE koosneb kahest või kolmest valgust. Nende kahe SNARE ühinemisel toimub peptiidahelate omavaheline keerdumine nii, et moodustub stabiilne neljaheeliksiline põimik. Membraanide liitumine ei toimu alati kohe pärast seda, kui vSNARE ja t-SNARE ühinevad, näiteks reguleeritud eksotsütoosi puhul käivitab liitumise spetsiifiline rakuväline signaal.

Fosfolipiidse kaksikkihi liitumine toimub mitmes etapis.

  1. Tekib tugev paardumine vSNARE ja t-SNARE vahel, mis tõmbab membraanid lähestikku ning surub nende vahelt välja vee molekulid.
  2. Vesiikuli ja organelli membraanide esimene lipiidide kiht valgub omavahel kokku. Moodustub membraane ühendav sild.
  3. Lipiidse membraani teised kihid ühinevad omavahel. Vesiikuli ja organelli membraanid ühinevad.

Rab-valk reguleerib t-SNARE kättesaadavust. t-SNARE-valgud on sihtmembraanis tihtipeale seondunud inhibiitoritega, mis peavad t-SNARE funktsioneerimiseks vabanema. Rab-valgud ja efektorid vahendavad selliste SNARE inhibiitorite vabanemist. Selleks, et vesiikul saaks ühineda mõne teise membraaniga, on vaja õigeid SNARE ja Rab-valke.

Vesikulaarne transport

Vesiikulite vahendatud ainete transport on kõrgelt organiseerunud ja kindla suunaga. Primaarne sekretoorne rada kulgeb ER-ist Golgi kompleksini ning seejärel raku pinnale, samas kui sekundaarne rada viib aga lüsosoomideni. Endotsüütiline rada kulgeb aga plasmamembraani pinnalt raku sisse. Mõlemal juhul on vesikulaarne transport tasakaalustatud vastassuunalise transpordiga, mis aitab tuua vesiikuli membraani ja selle koostises olevaid valke tagasi lähteorganelli membraani.

Vesikulaartranspordil võib eristada kolme põhilist suunda:

  1. Konstitutiivne sekretoorne suund – valk, mis satub ER-i (membraani või valendikku), liigub läbi Golgi kompleksi ning jõuab raku välispinnale. Arvatakse, et see toimub ilma spetsiaalse signaalita. Kõik valgud, mis ER-i satuvad ja millel pole küljes signaaljärjestusi, mis neid mingis kompartmendis kinni hoiaksid, saadetakse automaatselt raku välismembraanile või rakust välja.
  2. Lüsosomaalne suund – lüsosoomi sattumiseks peavad vastavad valgud saama spetsiaalselt märgistatud. Mannoos-6-fosfaat on lüsosomaalsete ensüümide marker. Seda markerit kandvad valgud kallutatakse kõrvale sekretoorselt suunalt ja saadetakse läbi endosoomi lüsosoomi.
  3. Reguleeritud sekretoorne suund – on olemas spetsialiseeritud rakkudes, kus esineb nn kontrollitud eksotsütoos. Vastavatel valkudel peavad olema analoogsed signaaljärjestused mannoos-6-fosfaadiga, mis määrab ära nende saatmise trans-Golgi kompleksi sekretoorsetesse vesiikulitesse.

Kõik ER-i membraani või selle valendikku sattunud valgud lõpetavad oma teekonna vastavalt kas raku välismembraanis või rakku ümbritsevas keskkonnas, juhul kui puuduvad signaaljärjestused, mis sunniksid valku kuskil peatuma või sellelt teelt kõrvale kalduma. Valkude sisenemist ER-i ja liikumist läbi Golgi kompleksi raku välispinnale transportvesiikulite abil nimetatakse klassikaliseks sekretoorseks rajaks.

ER-i ja Golgi kompleksi valendikud on topoloogiliselt ekvivalentsed raku väliskeskkonnaga. Nad on omavahel pidevas ühenduses transportvesiikulite abil, mis punguvad ühest kompartmendist ja ühinevad järgmisega. Vesiikulite liikumine on täpselt organiseeritud, see toimub ER-ilt Golgi kompleksi suunas ja sealt raku välispinnale.

Vaatamata sellele, et sekretoorse raja organellidest käib läbi pidev membraanikomponentide vool, peavad nad säilitama oma identsuse.

reede, 7. veebruar 2025

Parenhüümne rakk

Parenhüümne rakk ehk isodiameetriline rakk on taimerakk, mis on igas mõõtmes enam-vähem võrdse läbimõõduga.

neljapäev, 6. veebruar 2025

Prosenhüümne rakk

Prosenhüümne rakk on taimerakk, millel on väga piklik kuju.

Prosenhüümse raku pikkus võib küündida 25 sentimeetrini (lumivalge bömeeria).

kolmapäev, 5. veebruar 2025

Epiteelkude

Epiteelkude ehk epiteel (inglise keeles epithelial tissuekreeka keeles thēlē 'nisa') on loomorganismi välispinda kattev ja sisepinda vooderdav või näärmeid moodustav kude.  Epiteelkoed ehk epiteelid katavad nahkalimaskesti, teiste kudede vabu pindasid ja koosnevad ainult rakkudest, (rakuvaheaine praktiliselt puudub ning pole veresooni). Epiteelkoed on üks neljast loomakudede põhitüübist.

Epiteelid: ripseepiteelnäärmepiteel, transitoorne ehk üleminekuepiteel (kuseteedes esinev epiteel, mille kuju muutub) jpt. 

Epiteelkude jagatakse funktsiooni alusel:

Katteepiteeli rakud

Katteepiteeli rakkude kuju järgi eristatakse: 

Epiteelkoe uuenemine

Epiteelkoe uuenemine naha epidermises toimub üsna kiiresti, seda saab jälgida näiteks haavade paranemise kaudu (keskmiselt 4 -10 päeva).

teisipäev, 4. veebruar 2025

Endotsütoos

Endotsütoos on väliskeskkonnast transportvesiikulite abil makromolekulaarsete komponentide omastamine. Makromolekulid seonduvad membraani või retseptoriga ja see põhjustab plasmamembraanist koosneva vesiikuli moodustumise ehk endosoomi, mis tagab transporditavate ainete jõudmise rakku. Makromolekulaarsed ained ei läbi passiivselt hüdrofoobset plasmamembraani ning peavad seetõttu kasutama endotsütoosi. Mõiste võttis kasutusele 1963. aastal Christian de Duve. Endotsütoosile vastupidine protsess on eksotsütoos.

Endotsütoosi tüübid

Fagotsütoos

Fagotsütoos esineb rakkudes, mis on spetsialiseerunud suuremate partiklite ja mikroorganismide fagotsüteerimisele ehk kahjutuks tegemisele. Imetajates on nendeks ühisest eellasest arenenud makrofaagid ehk suur-õgirakud ning neutrofiilid ehk vere valgelibled, mis suuri võõrkehi "alla neelates" moodustavad fagosoomi. Fagosoomiga interakteerudes moodustab lüsosoom fagolüsosoomi. Paljudele ainuraksetele loomadele on fagotsütoos ainus toitumisviis.

Pinotsütoos

Pinotsütoos on lahustunud makromolekulide sissevõtmine väikeste vesiikulite abil. Pinotsütoos jaguneb kolmeks alatüübiks:

  1. Retseptorseoseline selektiivne endotsütoos. Kõigepealt seondub makromolekul rakumembraanis paikneva retseptoriga ning seejärel retseptor-ligandi kompleks assimileeritakse endotsütoosi teel ning moodustub transportvesiikul. Sellel on kaks mehhanismi:
    1. Klatriinisõltuv endotsütoos. Selle mehhanismi puhul on retseptorid kogunenud plasmamembraani teatud piirkonda, mida nimetatakse kaetud lohuks (coated-pit). Kaetud vesiikuli (coated vesicle) moodustumisel osaleb valk dünamiin. Vesiikul kaetakse klatriiniga, et toimuks suunatud liikumine Golgi kompleksi ja endosoomide vahel. Kui vesiikul on ühinenud endosoomiga, siis saadetakse klatriin raku välismembraani tagasi. Seda tüüpi endotsütoosi kasutavad kõik eukarüootsed rakud, et omastada vajalikke toitaineid ja signaalmolekule. Samuti eemaldatakse selle mehhanismi abil väliskeskkonnast potentsiaalselt kahjulikke ühendeid. Näiteks sisenevad rakkudesse madala tihedusega lipoproteiinid (LDL), mis sisaldavad kolesteroolitransferriini jt. ühendeid. LDL retseptori puudumine põhjustab hüperlipideemiat, mis põhjustab kolesterooli kuhjumist organismis ning ateroskleroosi.
    2. Kaveoliinisõltuv endotsütoos. Kaveoliinid on valgud, mis vastutavad, et kaveoolide pealt toimuks seostumine kolesterooliga. Kaveoolid on suhteliselt stabiilsed 50–80 nm laiused raku membraani sissesopistused, mis on retseptoriteks spetsiifilistele molekulidele, näiteks kõrge tihedusega lipoproteiinidele (HDL). Imetajates ekspresseeritakse 3 erinevat kaveoliinivalku.
  2. Kaveoliinist ja klatriinist sõltumatute vesiikulite teke. Järgmised endotsütoosi mehhanismid on kõige vähem kirjeldatud ning nende toimumise mehhanismid on veel paljuski ebaselged:
    1. CLIC/GEEC tüüpi endotsütoos. Kasutatakse CLIC (clathrin-independent carrier) ehk klatriinisõltumatu kandjate ja GEEC (GPI-anchored protein-enriched early endocytic compartment) ehk GPI-ankurdatud valgurikaste varajaste endotsütootiliste kompartmentide osa omavahelist koostööd. Seda tüüpi endotsütoosi vahendab GRAF-1 valk, mille abil sisenevad rakku bakteriaalsed eksotoksiinid, GPI-ga ankurdatud valgud ja muud ühendid.
    2. Flotilliinisõltuv endotsütoos. Flotilliinid moodustavad lipiidsete parvede sarnaseid piirkondi, sest nad asuvad kolesteroolirikastes regioonides. Sellist mehhanismi kasutati ka kaveoliinisõltuva endotsütoosi puhul.
  3. Makropinotsütoos. Põhjustab struktuurseid muutusi raku membraanis, mille tagajärjel moodustuvad väljasopistused, mis on võimelised haarama lahustunud aineid. Lahustunud makromolekulid sisenevad rakku umbes 0,5–5 μm laiusega vesiikulite ehk makropinosoomide abil. Makropinotsütoos on mittespetsiifiline endotsütoos, mille puhul ligandi seondumine retseptorile pole vajalik.
Pildil on põhilised endotsütoosi komponendid ja mehhanismid

Endotsütoosi ja lüsosoomi ühendus

Lüsosoom on membraaniga ümbritsetud hüdrolüütilisi reaktsioone teostav organell ning katalüüsimisele kuuluv aine saadakse endotsütoosi teel moodustunud vesiikulitest. Kõigepealt toimub väliskeskkonnast endotsütoosi teel vesiikuli moodustumine, mis ühineb varajase endosoomiga. Seal eemaldatakse spetsiifilised retseptorid, mis transporditakse tagasi plasmamembraani koostisse. Varajased endosoomid muutuvad aja möödudes hilisteks endosoomideks, kuhu transporditakse trans-Golgi kompleksist ka happelisi hüdrolüüse. Viimati nimetatud transpordiks on vajalik mannoos-6-fosfaat retseptor, mis eemaldub hilises endosoomis ning liigub hiljem tagasi Golgi kompleksi. Hilised endosoomid muutuvad lüsosoomideks, kus algab ainete degradeerimine ehk lahustumine. Endosoomide küpsemisel mängib rolli pH langus ehk hapestumine, mida reguleerivad ATP-sõltuvad prootonpumbad ja ioonkanalid. Varajastes endosoomides on pH umbes 6,2 ning hilistes endosoomides on pH umbes 5,5.

Eksotsütoos

Eksotsütoos on transportvesiikulite abil sisekeskkonnast makromolekulaarsete komponentide omastamine ning nende ühinemine raku välismembraaniga.

Eksotsütoosi rajad

  1. Pidev ehk konstitutiivne tee. Transpordivesiikulid kannavad pidevalt membraanikomponente Golgi kompleksist välismembraani, kus toimub mittevajalike valkude eksotsüteerimine rakust välja. Eksotsütoosi teel toimub pidev plasmamembraani uuenemine.
  2. Reguleeritud tee. Vajalikud on signaaljärjestused, mis määravad valkude jõudmise trans-Golgist sekretoorsetesse vesiikulitesse. Sekreteeritavad ained kogutakse sekretoorsetesse vesiikulitesse ning need ühinevad välismembraaniga pärast keskkonnast tulevat signaali, milleks võib olla hormoon või neurotransmitter. Signaali äratundmise tagajärjel tõuseb kaltsiumioonide kontsentratsioon ning seejärel aktiveerub reguleeritud eksotsütoos. Selline rada esineb neis rakkudes, mis on spetsialiseerunud oma toodangu kiirele eritamisele.

Mõned näited reguleeritud endotsütoosist:

  • Rakkudevahelise suhtluse tagab eksotsütoos, mis on oluline immuunsüsteemis olevatele T-rakkudele. T-rakud ehk tappurrakud on võimelised identifitseerima organismile võõraid objekte, näiteks viirusi. T-rakud eritavad tsütokiine, mis aktiveerivad omakorda teisi tappurrakke ning takistavad rakus viiruste paljunemist raku apoptoosiga ehk raku programmeeritud surmaga. T-rakud liiguvad nakatunud rakule väga lähedale ning signaali toimel vabaneb T-rakkudest perforiinproteiin, mis kaltsiumioonide toimel kinnitub sihtraku plasmamembraanile. Selle tulemusena läheb rakk apoptoosi.
  • Neuron ehk närvirakk on kohastunud närviimpulsside edasikandmiseks. Teiste rakkudega on ta ühenduses signaalainete kaudu. Neuroni aksoni terminaalis olevatest sünaptilistest vesiikulitest sekreteeritakse neurotransmittereid, mis kannavad närviimpulsi edasi postsünaptilisele rakule.

Endotsütoosi ja eksotsütoosi tasakaal

Raku ruumala ja pindala on konstantsed ehk püsivad, seega endotsütoosi ja eksotsütoosi omavaheline tasakaal peab olema stabiilne, et tagada võimalikult püsiv rakusisene keskkond. Iga vesiikul on määratud ühinema ainult kindla membraaniga. Tulemuseks on makromolekulide suunatud liikumine raku sise- ja väliskeskkonna vahel. Transportvesiikulite teket katalüüsivad spetsiifilised kattevalgud. Katetena kasutatakse sihtkoha-spetsiifilisi valke:

  • Klatriin. Klatriiniga kaetud vesiikulid liiguvad plasmamembraani ja endosoomide vahel, samuti trans-Golgi retiikulumi ja endosoomide vahel. See mehhanism ei vaja ATP-d.
  • COP valgud. Nende moodustatud katte tekkeks on vaja lisaenergiat, mis saadakse ATP hüdrolüüsi käigus. Sõltuvalt sihtmembraanist jaotatakse COP valgud järgnevalt kaheks:
    • COP I – transpordib vesiikuleid cis-Golgi kompleksist endoplasmaatilisse retiikulumi.
    • COP II – transpordib vesiikuleid endoplasmaatilisest retiikulumist cis-Golgi kompleksi.

Et transportvesiikulid tunneksid ära õige sihtmembraani, osalevad protsessis SNARE-valgud. SNARE-valgud on transmembraansed valgud, mis jagunevad vastavalt kaheks, kas valk asub vesiikulil (vSNARE) või sihtmembraanil (tSNARE). Vesiikuli ühinemine sihtmembraaniga ei toimu iseeneslikult, vajalikud on Rab perekonna GTP siduvad valgud.

esmaspäev, 3. veebruar 2025

Adenosiintrifosfaat (ATP)

Adenosiintrifosfaat ehk adenosiin-5’-(tetravesinik-trifosfaat) ehk ATP on universaalne energia talletaja ja ülekandja, mis osaleb kõigi rakkude metabolismis. ATP on makroergiline ühend.

Adenosiintrifosfaadi struktuur
ATP ruumiline kujutis

ATP-d toodetakse kõige rohkem mitokondritesTaimedes ja vetikates toimub intensiivne ATP moodustumine kloroplastides.

ATP koosneb adeniinistriboosist ja kolmest lineaarselt seotud fosfaadijäägist, mis on omavahel ühendatud fosfoanhüdriidsidemetega. ATP molekuli keemiline valem on C10H16N5O13P3.

AjaluguRedigeeri

ATP avastasid 1929. aastal Harvardi meditsiinikooli teadlased Karl Lohmann,[1] Cyrus Fiske ja Yellapragada Subbarow. Selle täpne struktuur tehti kindlaks alles mõned aastad hiljem. ATP funktsiooni peamise energiakandjana rakus avastas aga teine saksa-ameerika biokeemik Fritz Albert Lipmann 1941. aastal.[2] 1948. aastal suudeti ATP’d esimest korda kunstlikult sünteesida ja sellega sai hakkama Alexander Todd.[3]

ATP funktsioonRedigeeri

ATP on multifunktsionaalne nukleosiid trifosfaat, mida kasutatakse rakkudes koensüümina. Tihtipeale kutsutakse seda "molekulaarseks valuutaks" rakusisesel energiaülekandel.[4] Keemilise energia kandjana mängib ATP olulist rolli metabolismis ehk ainevahetuses. Lisaks on see üks fotofosforüleerimise ja raku hapnikutarbe lõpp-produkte. Rakusisestes protsessides vajavad ATP’d paljud ensüümid ja struktuurvalgud (näiteks biosünteetilistes reaktsioonides ja raku jagunemisel).[5]

Üks ATP molekul, mida toodab ATP-süntaas anorgaanilisest fosfaadist ja adenosiindifosfaadist (ADP) või adenosiinmonofosfaadist (AMP) sisaldab kolme fosfaatrühma. Adenosiintrifosfaadi sünteesiks on kolm võimalust: otsene fosfaatrühma ülekanne AMP’le või ADP’le, oksüdatiivne fosforüleerimine rakusisese hapnikutarbe käigus ja fotofosforüleerimine fotosünteesil.

Ainevahetuse protsessid, mis kasutavad ATP’d energiaallikana, muudavad selle pärast kasutamist tagasi lähteaineteks, millest seda esialgu toodeti (anorgaaniline fosfaat ning AMP või ADP). Seega on ATP organismis pidevas ringluses. Inimkeha, mis sisaldab keskmiselt kõigest 250 grammi ATP’d,[6] töötleb seda igapäevaselt ümber võrdeliselt oma kehakaaluga.[7]

ATP’d kasutatakse substraadina nii kinaaside kui ka adenülaadi tsüklaasi poolt. Kinaasid on ensüümid, mis aitavad fosfaatrühmi kõrge energiaga molekulidelt (ATP) näiteks valkudele ja lipiididele üle kanda. Adenülaadi tsüklaas katalüüsib sekundaarse virgatsaine cAMP (adenosiin-3’,5’-monofosfaadi) moodustumist.

Rakud kasutavad ATP ja AMP koguste vahelist suhet mitmeks otstarbeks. Esiteks selleks, et teha kindlaks, kui palju energiat, mida organism saaks kulutada, on saadaval. Teiseks selleks, et kontrollida metabolismiradade tegevust, mille käigus nii toodetakse kui ka tarbitakse ATP’d.[8] Lisaks mängib ATP olulist rolli DNA replikatsioonil ja transkriptsioonil. Arvatakse, et ATP näol on tegemist neurotransmitteriga, mis vahendab haistmismeele signaaliülekandeid.[9]

ATP struktuurist on näha, et see koosneb puriinalusest (adeniin), mis paikneb pentoosisuhkru (riboos) ahela esimese süsiniku aatomi (1’-süsinik) küljes. Kolm fosfaatrühma paiknevad aga pentoosisuhkru viienda süsiniku (5’-süsinik) küljes. Fosfaatrühmade liitmine ja eemaldamine võimaldab ATP muutmist ADP’ks ja AMP’ks ning vastupidi. Kui DNA sünteesil kasutatakse ATP’d, siis muudetakse riboos spetsiaalsete ensüümide (ribonukleotiidreduktaas) abil desoksüriboosiks.

Füüsikalised ja keemilised omadusedRedigeeri

ATP koosneb adenosiinist (mis omakorda koosneb adeniinist ja riboosisuhkrust) ning kolmest fosfaatrühmast (trifosfaadist). Fosfaatrühmi fosforüülgrupis nimetatakse, alustades riboosile lähimast, vastavalt alfa (α), beeta (β) ja gamma (γ) fosfaatideks. Struktuurist võib järeldada, et see on väga lähedalt seotud andenosiini nukleotiidiga ehk teisisõnu RNA monomeeriga. ATP on vees väga hästi lahustuv molekul. Äärmuslike pH’ga lahustes hüdrolüüsub ATP suure kiirusega. Lahustes, mille pH on vahemikus 6,8–7,4, on molekul küllaltki stabiilses olekus.[10]

Ilma puhveromaduseta vees muutub ATP ebastabiilseks, mistõttu see hüdrolüüsub ADP’ks ja fosfaadiks. Hüdrolüüsiprotsess leiab aset sellepärast, et sidemetugevus ATP fosfaatrühmade vahel on väiksem kui hüdrolüüsi tulemusel tekkivate produktide (ADP ja fosfaat) ning vee vahel moodustuvate vesiniksidemete tugevus. Seega kui ATP ja ADP on vesilahuses keemilises tasakaalus, siis peaaegu kogu ATP muudetakse lõpuks ADP’ks. Süsteem, mis on tasakaaluolekust kaugel, sisaldab Gibbsi vabaenergiat (ΔG) ning on seetõttu võimeline tegema tööd. Elusrakkudes on ATP ja ADP vaheline suhe 0,1 suurusjärku tasakaaluolekus esinevast suhtest kõrgem ning ATP kontsentratsioon on umbes 1000 korda suurem kui ADP kontsentratsioon. Seesugune nihe tasakaaluolekust tähendab seda, et tänu ATP hüdrolüüsile rakus eraldub suurtes kogustes vabaenergiat.[11]

ATP on niivõrd kõrge energiasisaldusega molekul tänu kahele fosfaatrühmade vahelisele sidemele. Neid sidemeid nimetatakse fosfoanhüdriidsidemedeks.[12] Energia, mis on ATP molekulis salvestatud, vabaneb eelpool mainitud anhüdriidsidemete hüdrolüüsil.[12] Energia puudujäägi korral anaboolses reaktsioonis eraldub energia saamiseks hüdrolüüsi käigus ATP’lt esimesena γ-fosfaatrühm. Kuna γ-fosfaatrühm asub riboosist võrreldes teiste fosfaatrühmadega kõige kaugemal, on sellel nii α- kui ka β- fosfaatrühmast suurem lõhustumisenergia. Pärast hüdrolüüsiprotsessi (või fotofosforüleerimise protsessi ATP’ga) moodustuvate sidemete energiatasemed on madalamad, kui ATP's leiduvate fosfoanhüdriidsidemete omad. Ensüümkatalüüsi abil aset leidva ATP hüdrolüüsi või ATP’ga fotofosforüleerimisel tekkiv vabaenergia võidakse elusolendite poolt ära kasutada töö tegemisel.[13][14]

Iga ebastabiilne süsteem, mis sisaldab reaktsioonivõimelisi molekule, võiks teoreetiliselt olla energia salvesti. See aga oleks võimalik vaid juhul, kui rakk suudaks endas säilitada antud molekuli sellise kontsentratsiooni, mis on reaktsiooni tasakaaluolekust kaugel.[11] Kuid nagu paljude teiste polümeersete biomolekulide puhul, toimub ka RNA, DNA ja ATP lagunemine lihtsamateks monomeerideks lähtuvalt energia vabanemise ja entroopia suurenemise reeglitest. Seda nii standardsete kontsentratsioonide kui ka rakus olevate kontsentratsioonide korral.

Standardset energiahulka, mis vabaneb ATP hüdrolüüsil, on võimalik välja arvutada muutuste põhjal, mis toimuvad reaktsioonis standardtingimustel. Saadud andmete abil on arvutuste tulemusi võimalik muuta nii, et need vastaks bioloogilistele kontsentratsioonidele. Reaktsioonientalpia muutus ATP hüdrolüüsumisel ADP’ks ja anorgaaniliseks fosfaadiks standardsel temperatuuril ja rõhul on −20,5 kJ/mol. Sama protsessi vabaenergia muut on 3,4 kJ/mol.[15] Eraldades 1 M kontsentratsiooniga lahuses standardtingimustel ATP’lt kas fosfaatrühma (Pi) või pürofosfaatrühma (PPi), vabanevad järgnevad energiahulgad:[16]

ATP + H2O → ADP + Pi ΔG˚ = −30,5 kJ/mol (−7,3 kcal/mol)

ATP + H2O → AMP + PPi ΔG˚ = −45,6 kJ/mol (−10,9 kcal/mol)

Neid andmeid võib kasutada, et arvutada nii energiamuutu füsioloogilistes tingimustes kui ka rakusisest ATP ja ADP vahelist suhet. Üha enam hakatakse aga kasutama sellist energiahulka, mis arvestab lisaks ATP ja ADP kogusele ka AMP kogust. Selle reaktsiooni Gibbsi vabaenergia sõltub aga mitmest muust faktorist, sealhulgas üldisest lahuse ioontugevusest ja leelismuldmetallide (nt Mg2+ ja Ca2+) sisaldusest. Tavapärastes rakusisestes tingimustes on sellise Gibbsi vabaenergia väärtus umbes −57 kJ/mol (−14 kcal/mol).[17]

Ionisatsioon bioloogilistes süsteemidesRedigeeri

Adenosiintrifosfaat sisaldab mitut asendusrühma, millel on erinevad happe dissotsiatsioonikonstandid. Neutraalses lahuses esineb ATP enamasti ioniseerunud vormis (enamus on vormis ATP4−, kuid lisaks sellele esineb ka vähesel hulgal ATP3− ioone).[18] Kuna ATP esineb neutraalses lahuses erinevates negatiivselt laetud vormides, siis võib see tänu kõrgele afiinsusele metallidega kelaatuda. Järgnevalt on toodud mõnede metalliioonide sidumiskonstandid (konstant on antud 1 mooli kohta): Mg2+ (9554), Na+ (13), Ca2+ (3722), K+ (8), Sr2+ (1381), Li+ (25).[19] Nagu konstantide väärtusest järeldada võib, moodustab ATP kompleksi enamasti Mg2+ ioonidega.


reede, 31. jaanuar 2025

Aine ja energia vahetus

 

Aine- ja energiavahetus

 

Metabolism – organismi biokeemilised protsessid, mis tagavad aine- ja energiavahetuse ümbritseva keskkonnaga

            Metabolism jaguneb kaheks: assimilatsioon (organismis toimuvate sünteesiprotsesside kogum; N: valgussüntees ja fotosüntees) ja dissimilatsioon (organismis leiduvate lagunemisprotsesside kogum; N: süsivesikute lagundamine).

 

            Organismid jagunevad kolme rühma : autotroofid, miksotroofid ja heterotroofid.

 

Autotroofid on organismid, kes sünteesivad ise orgaanilist ainet, kasutades selleks valguse või keemiliste ühendite energiat. N: rohelised taimed ja osad bakterid.

Miksotroofid on organismid, kelle toitumine oleneb keskkonna tingimustest. N: roheline silmviburlane, huulhein, alpi võipätakas.

Heterotroofid on organismid,  kes kasutavad oma keha ülesehitamiseks ja energia saamiseks valmis orgaanilist ainet (nt. fotosünteesi). N: loomad (k.a. inimene), seened, klorofüllita taimed, osad bakterid.

 

ATP – adenosiintrifosfaat 

 

 

ATP on universaalne energia ülekandja.

 

            Glükoosi lagundamine

 

Glükoosi varusid säilitatakse: a) taimedes tärklisena

                                                b) glükoosina maksas ja lihastes

 

Glükoosi lagundamine jaguneb kolme etappi: glükolüüs, tsitraaditsükkel ja hingamisahel.

           

            I   GLÜKOLÜÜS

 

             1) Aeroobne glükoos – toimub tsütoplasmavõrgustiku siledapinnalises osas

 

                        Lähteaineks on glükoos

                        Tekib 2 ATP, 4 H -> 2NADH2

             2) Anaeroobne glükoos (käärimine)

 

                        a) piimhappekäärimine – läbiviijad on piimhappebakterid ja lihasrakud hapniku puuduses.

                        Tekib: 2 ATP-d ja piimhape

 

                        b) alkohol- e. etanoolkäärimine – läbiviijad on pärmseened ja osad bakterid

                        Tekib: 2 ATP-d ja etanool

 

                        Vajalikud tingimused:

            a) hapniku puudus

            b)kergesti omandatavate süsivesikute olemasolu

            c) tekkiv etanooli hulk ei või olla väga suur

 

            II TSITRAADITSÜKKEL – toimub mitokondri maatriksis

 

            Lähteaineks atsetüülkoensüüm A, mis tekib glükolüüsil moodustunud püroviinamarihappest.

            Kulg – eralduvad CO2 molekulid ja tekib 10 NADH2 molekuli.

 

            III HINGAMISAHEL – toimub mitokondri sisemembraani harjakestel (sopiste tippudes)

 

            Kulg – glükolüüsil ja tsitraaditsüklis tekkinud NADH2 energia arvel sünteesitakse ATP-d (kokku 36 ATP-d)

 

 

            Fotosüntees

 

            Fotosüntees on klorofülli sisaldavates taimerakkudes toimuv assimilatsiooniprotsess, mille käigus salvestatakse valgusenergia orgaaniliste ühendite keemiliste sidemete energiaks.

 

            Fotosünteesi peamisteks lähteaineteks on CO2 ja H2O ning lõpp-produktiks glükoos ja hapnik.

 

            Fotosüntees jaguneb kahte staadiumisse: valgusstaadium (nõuab valgust) –fotofüüsikaline ja fotokeemiline faas; pimedusstaadium (ei vaja valgust) – fotokeemiline faas e. Calvini tsükkel

 

            I Valgusstaadium

 

1) fotofüüsikaline faas – valguse neeldumine

2) fotokeemiline faas – eristatakse kahte süsteemi:

            a) fotosüsteem 2 – ergastub 680 nm valgusega

                ülesanded:   * toimub vee fotooksüdatsioon, mille käigus eralduvad prootonid

                                    * veelt võetakse ära elektronid

                                    * vee fotooksüdatsiooni produktide omavahelisel seostumisel tekib hapnik

 

            b) fotosüsteem 1 – ergastub 700 nm juures

                ülesanded:   * reduktiivjõu tekitamine

                                    *koos fotosüsteem 2-ga osalevad vesinike aatomite kontsentratsiooni eriosade tekkimisel

                                    * lähtuvalt vesiniku aatomite kontsentratsiooni erinevustest toimub ATP süntees.

 

            II Pimedusstaadium – fotobiokeemiline faas

 

            Aluseks on CO2 sidumine ja muundamine stroomas paiknevate ensüümide poolt. CO2 seotakse viie süsinikulise ühendina. Esmaseks fotosünteesi produktiks on triosiid, tekib tärklis.

 

            Fotosünteesi tähtsus: vee fotooksüdatsiooni käigus eralduv hapnik on vajalik kõigi organismide hingamiseks; fotosüntees tagab süsiniku ja hapniku ning teiste keemiliste elementide ringe.          

neljapäev, 30. jaanuar 2025

Adenosiindifosfaat (ADP)

Adenosiindifosfaat (ADP) on nukleotiid, mis koosneb adeniinistriboosist ja kahest lineaarselt seotud fosfaadijäägist, mis on omavahel ühendatud happeanhüdriidsidemetega. Ta on pürofosforhappe ester adenosiiniga.

Adenosindiphosphat protoniert.svg

ADP esineb arvatavasti kõigis organismides. Ta toimib paljudes ainevahetusreaktsioonides (näiteks glükolüüsis ja hingamisahelas) energia ja fosfaadi ülekandjana.

ATP moodustub ADP-st; ATP-s talletunud energia vabanemisel hüdrolüüsis vabaneb ADP.

Keemiline valem on C10H15N5O10P2.

kolmapäev, 29. jaanuar 2025

Eosinofiilid

Eosinofiilid ehk eosinofiilsed granulotsüüdid ehk atsidofiilid (ladina keeles eosinumeosinophilusgranulocytys acidophilus) on paljude selgroogsete lümfoid(-immuun)süsteemi fagotsüütilised leukotsüüdid.

Eosinofiil mikroskoobi all vaadatuna (400x). Eosinofiili ümbritsevad punased verelibled (vasakul)

Eosinofiilide noored vormid tekivad luuüdis. Eosinofiilide ülesandeks on suuremate parasiitide hävitamine ning allergiliste ja põletikuliste reaktsioonide modulleerimine.

Eosinofiilide areng, morfoloogia ja patoloogia võivad erineda nii liigiti, indiviiditi kui ka arenguastmeti.

Eosinofiilide nimetust kannab ka täisvereanalüüsi eosinofiilide absoluutarv (lüh EO).

Roomajatel

Maolistel

Madude veres ning kudedes liikuvaid eosinofiile ei ole lõpuni uuritud, teatud autorite arvates on madudel eosinofiilid ikkagi tuvastatavad ja kirjeldatavad. Madude vereanalüüside eosinofiilide referentsväärtuste vahemikuks võetakse 0–1%.

Inimestel

Terminoloogia

Eosinofiilid on kantud kehtivasse inimese tsütoloogia ja histoloogia standardsõnavarasse Terminologia Histologica-sse.

Laboratoorne hematoloogia

Eosinofiilide hulk veres on küllalt kõikuv ja varieeruv näitaja, mis sõltub mitmetest teguritest. Eosinofiilide arvu vereproovis määratakse erinevaid automatiseeritud laboratoorse diagnostika meetodeid kasutades.

Eosinofiilide normväärtused vere automaatuuringu põhjal

Patsiendi vanusReferentsvahemik
sünnijärgselt0,0–0,84 × 109/l
1 eluaasta0,3–0,8 × 109/l
6–12 aasta0,1–0,5 × 109/l
naised0,0–0,4 × 109/l
mehed0,0–0,4 × 109/l

Patoloogia

Eosinofiilidega seostatakse inimestel mitmeid allergilisi ja haiguslikke seisundeid, näiteks eosinofiiliaeosinofiilne granuloomeosinopeeniaeosinofiilne gastroenteriit jpt.

teisipäev, 28. jaanuar 2025

Gliia

Gliia (vanakreeka sõnast γλία, γλοία 'liim') ehk neurogliia on närvisüsteemi kude, millel on perifeerses ja kesknärvisüsteemis mitu tugifunktsiooni, sealhulgas närvijätkete elektriline isoleeriminerakuvälise keskkonna reguleerimine ja kaitsefunktsioon.

Gliiarakkudeks ehk gliotsüütideks nimetatakse närvisüsteemi rakke, mis ei ole närvirakud. Gliiarakke on mitut tüüpi. Need erinevad omavahel funktsiooni, ehituse ja asukoha poolest.

Esimesena kirjeldas gliia rakke saksa patoloog Rudolf Virchow 1856. aastal.

Gliiarakud moodustavad kesknärvisüsteemi ruumalast poole. Inimese ajus on umbes 86 miljardit närvirakku ja ligikaudu 85 miljardit gliiarakku, kusjuures gliiarakkude ja närvirakkude vahekord on aju eri osades oluliselt erinev. Näiteks ajukoores on gliiarakke umbes 3,7 korda rohkem kui närvirakke, samas kui väikeajus on närvirakke gliiarakkudest üle nelja korra rohkem.

Funktsioon

Gliial on teada viis põhilist funktsiooni:

  1. Struktuurne funktsioon.
  2. Närvirakkude varustamine toitainete ja hapnikuga.
  3. Rakuvälise keskkonna reguleerimine – gliiarakud reguleerivad rakuvälist ioonide kontsentratsiooni ning eritavad ja eemaldavad neurotransmittereid.
  4. Närvirakkude ja närvijätkete isoleerimine – gliiarakud moodustavad närvijätkete ümber müeliintupe, mis võimaldab närvisignaalide kiiremat kulgemist.
  5. Haigustekitajate hävitamine ja surnud närvirakkude eemaldamine – teatud gliiarakud on võimelised fagotsütoosiks.

Gliiarakud sünteesivad neurosteroide.

Gliiarakkude tüübid

Mikrogliia

Next.svg Mikrogliiarakud pärinevad 
mesodermist ning täidavad kesknärvisüsteemis makrofaagide
 funktsiooni. Erinevalt närvirakkudest liiguvad mikrogliiarakud ringi. Need jälgivad aju sisekeskkonda ning sooritavad vajaduse korral fagotsütoosi.

Mikrogliia rakud ekspresseerivad D1- ja D2-dopamiiniretseptoreidDopamiin, toimides D1-le, reguleerib mikrogliia lämmastikoksiidi sünteesi.

Ajutrauma või infektsiooni korral mikrogliia rakud jagunevad ning vahendavad vajalikke kaitsefunktsioone.

Makrogliia

Next.svg Makrogliiarakud arenevad ektodermist ehk välisest lootelehest.
  • Astrotsüüdid (vahel ka astrogliia) on arvukaim gliiarakkude tüüp kesknärvisüsteemis. Astrotsüüdid on nimetuse saanud selle järgi, et nad on "tähekujulised". Astrotsüüdid reguleerivad närvisüsteemi keemilist keskkonda, kohandades ioonide kontsentratsiooni ning eemaldades sünaptilisel ülekandel eralduvaid neurotransmittereid.
  • Oligodendrotsüüdid isoleerivad kesknärvisüsteemis närvirakkude aksoneid, moodustades müeliintupe, mis võimaldab kiiremat närvisignaalide kulgu.
  • Ependüümirakud (vahel ka ependümotsüüdid) ümbritsevad seljaaju ja ajuvatsakeste sisemust. Ependüümirakud sünteesivad aju-seljaajuvedelikku ning kontrollivad ainevahetust liikvori ja närvisüsteemi vahel. Ependüümirakud võivad teatud tingimustes käituda närvikoe tüvirakkudena.
  • Radiaalgliia mängib olulist rolli närvisüsteemi arengus, kus radiaalgliiarakud moodustavad juhteteed, mida mööda migreeruvad diferentseeruvad närvirakud. Radiaalgliiarakud käituvad ka kui närvirakkude eellasrakud, diferentseerudes hilisemas arengus närvirakkudeks. Täiskasvanu ajus võib radiaalgliiarakke täheldada väikeajus (ehk tserebellumis) ja silma võrkkestas. Tserebellumis nimetatakse radiaalgliiarakke Bergmanni gliiaks, mis reguleerib sünaptilist plastilisust. Silma võrkkestas on radiaalsed Mülleri gliiarakud peamiseks gliiarakutüübiks, mis täidavad gliiale omaseid tugifunktsioone.
  • Schwanni rakud täidavad oligodendrotsüütidega sarnast rolli perifeerses närvisüsteemis. Schwanni rakud moodustavad perifeersete närviaksonite ümber müeliintupe, mis võimaldab kiiremat närvisignaalide levikut. Perifeerse närvi vigastamisel võivad Schwanni rakud muutuda fagotsütootiliseks ning toota mitmeid perifeerse närvi regenereerumiseks vajalikke signaale.

Gliiarakkude vahekorrad erinevad oluliselt sõltuvalt indiviidist. Nii näiteks tuvastati ühes uuringus eri vanuses inimeste neokorteksirakkude steroloogilise loendamise käigus, et gliiarakkudest on keskmiselt 75,6% oligodendrotsüüdid, 17,3% astrotsüüdid ja 6,5% mikrogliia ning vanuse kasvades kahaneb oligodendrotsüütide arv. Samuti leiti, et meestel on gliiarakude arv suurem kui naistel.