Fotolitograafia ehk optiline litograafia on pooljuhttehnoloogia protsess, kus kujutis kantakse alusmaterjali ehk substraadi pinnale. Kasutatakse väga väikese lainepikkusega valgust (ultraviolettkiirgust), et kanda fotomaski kujutis alusel olevale valgustundlikule kemikaalile, s.o fotoresistile, millele järgneb söövitusprotsess.
Fotolitograafia on olnud valdavaks tehnikaks integraallülituste litografeerimisel, näiteks CMOS-kiip läbib fotolitograafia tsükli kuni 50 korda.
PõhiprotseduurLihtsustatud joonis kuivsöövitusest positiivse resistiga fotolitograafia protsessis
Üks fotolitograafiaprotsess koosneb mitmest sammust, milleks tavaliselt on pooljuhtplaadi puhastamine, ettevalmistus, fotoresisti pealekandmine, solventide (lahustite) eemaldamine, fotomaski paigaldus, eksponeerimine, ilmutamine, söövitamine ning fotoresisti eemaldus. Tänapäevastes puhasruumides on litograafiaprotsess suuresti automatiseeritud.
Alusmaterjali pinna puhastus
Võimalikud saasteained eemaldatakse pooljuhtplaadi pinnalt tavaliselt keemilise töötlusega, näiteks vesinikperoksiidi sisaldavate lahustega RCA puhastusmeetodil.
Ettevalmistus
Pooljuhtplaat kuumutatakse temperatuurini, et kogu võimalik niiskus aluse pinnalt ära auraks. Lisatakse ka n-ö adhesiooni promootorit, mis hiljem soodustab fotoresisti adhesiooni pooljuhtplaadi pinnale.
Fotoresisti pealekandmine
Pooljuhtplaat kaetakse fotoresistiga vurrkatmise teel. Viskoosne, vedel fotoresisti lahus jaotatakse pooljuhtplaadile, mis pöörleb kiiresti ja tsentrifugaaljõu tõttu saab ühtlase paksusega fotoresisti kile. Vurrkatmine kestab keskmiselt 15–60 sekundit, 1200–6000 pööret/min. Saadud kihi paksus on 0,5 ja 2,5 mikromeetri vahel ning väga ühtlane. Seejärel fotoresistiga kaetud pooljuhtplaat kuumutatakse temperatuuril, mis on kõrgemal kui klaasisiirde temperatuur umbes 30–60 sekundit, et liigne solvent ära auraks ning fotoresisti kile tiheneks.
Ekspositsioon ja ilmutamine
Pärast kuumutamist valgustatakse eelnevalt sadestatud kilet UV-kiirgusega läbi fotomaski, millel on kujutis vastavalt soovitud elemendile integraallülituses, mis põhjustab fotoresistis kas molekulidevaheliste põiksidemete tekke (näiteks SU-8) või, vastupidi, keemiliste sidemete lagunemise (näiteks PMMA). Positiivne resist on materjal, mida saab paremini lahustada pärast UV-kiiritamist, seega pooljuhtplaadile pärast ilmutust jäänud muster vastab fotomaski omale. Negatiivne resist, vastupidi, kõvastub pärast kiiritamist ning ilmutuslahus eemaldab ainult eksponeerimata alad (nimetus analoogselt negatiivile fotograafias). Saadud pooljuhtplaat kuumutatakse, et järelejäänud fotoresist kõveneks ja oleks vastupidavam järgnevale söövitusele.
Söövitus
Söövituse korral, vedelik ("märg") või plasma ("kuiv") eemaldab substraadil pindmised kihid, mida ei kaitse fotoresist. Keemiline märgsöövitus toimub reeglina aluse või happega ja söövitusprotsessi peatamiseks pestakse pinda puhta veega. Näiteks SiO2 kile korral saab seda söövitada HF-ga. Kuivsöövituse puhul toimub materjali eemaldamine plasma keemilisel või füüsikalisel vastasmõjul materjaliga. Pooljuhtfabritseerimises kasutatakse enamasti kuivsöövitusmeetodeid, kuna see võimaldab anisotroopset söövitust, mis lubab valmistada väga täpseid, teravate nurkade ja servadega struktuure. Näiteks HfO2 kile puhul on efektiivsem plasmasöövitus. Söövitamise kvaliteet on määratud fotoresisti kihi adhesiooniga plaadil, võimalike defektidega maskis ning sõltub söövitaja keemilisest loomusest ja söövitusprotsessi parameetritest. Oluline on seejuures protsessi selektiivsus – see peab üldiselt eemaldama ainult soovitud materjali ega tohi mõjuda fotoresistile.
Fotoresisti eemaldamine
Viimase etapina eemaldatakse fotoresist substraadilt ning saadakse puhta pinnaga materjal, kuhu on kantud vajalik integraallülitus. Fotoresisti eemaldamine toimub kas kuiv- või märgmeetodil ning enamasti kasutatakse viimati mainitud meetodit, kus vedelik muudab fotoresisti sellisel viisil, et see enam ei adheeru substraadile. Selliseks aineks on näiteks H2SO4. Fotoresisti kuiveemaldamine viiakse läbi tavaliselt hapnikku sisaldavas plasmas ning see sarnaneb kuivsöövitusega.
Eksponeerimise põhimeetodidKontaktlitograafia
Kontaktlitograafia korral pressitakse mask vahetult vastu resistiga kaetud alust ning seejärel eksponeeritakse UV-kiirgusega. Meetodi eeliseks on hea ruumiline lahutus, kuna mask ja resist on vahetus kontaktis. Puuduseks on maski suhteliselt kiire mehaaniline kulumine.
Lähilitograafia
Lähilitograafia sarnaneb kontaktlitograafiaga, kuid esimese puhul asetatakse mask alusest paarikümne mikromeetri kaugusele. See vähendab maski kulumist, kuid samas valguse difraktsiooni tõttu ka ruumilist lahutust.
Projektsioonlitograafia
Projektsioonlitograafia korral maski kulumist ei esine, kuna maski kujutis projekteeritakse resistiga kaetud alusele mitme sentimeetri kauguselt. Kõrge lahutuse saamiseks projekteeritakse ainult väike osa maskist korraga ning skaneeritakse mööda pooljuhtplaadi pinda, kuniks terve fotoresist pooljuhtplaadil on eksponeeritud. Sellest tulenevalt lubab meetod parimat lahutust ja saab kasutada vähendatud kujutist (4–5 korda), mis seab väiksemad nõuded maski valmistustäpsusele. See on levinuim meetod tänapäeval.
FotomaskidFotomask valmistatakse valgust läbilaskvale (tavaliselt amorfsest kvartsklaasist) alusele, millele kantakse valgust blokeerivad mustrid. Tavaliselt kujutavad viimased endast umbes 100 nm paksusi ioontolmustamise teel valmistatud kroomkilesid. Fotomaske kasutatakse enamasti lainepikkustel 365 nm, 248 nm ja 193 nm, kuid kasutatakse ka lühemaid lainepikkusi. Valguse difraktsiooni tõttu on ruumilise lahutuse piir määratud poolega valguse lainepikkusest ning seetõttu on järjest väiksemate struktuuride valmistamiseks tulnud üle minna järjest ultravioletsematele allikatele. Viimasest tulenevalt lülituse elemendid, mis on väiksemad kui 150 nm vajavad reeglina faasinihkemaske, et parendada kujutise kvaliteeti rahuldavate väärtusteni.
Ruumiline lahutus- Fotolitograafias on põhiprobleemiks kasutatava kiirguse difraktsioon. Lühema lainepikkusega kiirguse kasutamine võimaldab kiirguse difraktsiooni vähendada. Modernsed fotolitograafiaseadmed kasutavad eksimeerlasereid, millega on võimalik printida kuni 50-nanomeetriseid elemente. Eksimeerlaser-litograafia omab seega olulist rolli Moore’i seaduse jõuspüsimisel viimase 20 aasta vältel.
Väikseim integraallülituse element, mida projektsioonilitograafiaga printida saab, on antud valemiga:
- , kus
on minimaalne (joonistatava) elemendi suurus ehk kriitiline mõõde
(k1 faktor) on koefitsient, mis sisaldab protsessiga seotud tegureid ja tüüpiliselt võrdub 0,4 tootmises.
on kasutatava valguse lainepikkus ja on läätse avaarv, mis näitab optilise süsteemi võimet koguda talle langevat valgust. on läätse ja pooljuhtplaadi vahelise keskkonna murdumisnäitaja ning on maksimaalne vastuvõtunurk. Mida suurem see on, seda suurem on avaarv.
Sellest võrrandist tulenevalt saab minimaalset elemendi suurust vähendada, vähendades lainepikkust ja suurendades avaarvu, kasutades immersioonvedelikku (näiteks vesi).
ValgusallikadAlgselt saadi UV-kiirgust fotolitograafias gaaslahenduslampidest, kasutades elavhõbedat, mida vahel kasutati koos väärisgaasidega nagu näiteks ksenoon. Need lambid toodavad valgust laias lainepikkuste vahemikus koos mõne maksimumiga UV-kiirguse piirkonnas. Seda spektrit filtreeritakse, et valida välja üks spektrijoon. 1960. aastate algusest kuni 1980. aastate keskpaigani kasutati litograafias elavhõbelampe iseloomulike 436 nm ("g-joon"), 405 nm ("h-joon") ja 365 nm ("i-joon") spektrijoonte tõttu. Pooljuhtelektroonika tööstuse vajadus suurema lahutusvõime ja tootlikkuse järele, muutis seni kasutatud lambid iganenuks.
See probleem sai lahendatud 1982. aastal, kui Kanti Jain pakkus välja ja demonstreeris IBM-is eksimeerlaser-litograafiat. Nüüd on eksimeerlaser-litograafia masinad (stepperid ja skannerid) peamised vahendid, mida kasutatakse mikroelektroonika kiipide tootmisel kogu maailmas. Viimase kahe aastakümne jooksul on tööriistade tehnoloogias toimunud suur areng ning pooljuhttööstuse nägemuse järgi on eksimeerlaser-litograafia olnud Moore'i seaduse edasiarendamisel kriitiline tegur, mistõttu on kiipide tootmisel minimaalne detailide suurus muutunud 20 aasta jooksul 0,5 mikromeetrist vähem kui 45 nanomeetrini. Usutakse, et see trend jätkub ka sel aastakümnendil, ning toodetakse veel tihedamaid kiipe, mille minimaalsed mõõtmed lähenevad 10 nanomeetrile.
Levinumad UV eksimeerlaserid litograafiasüsteemides on KrF-laser lainepikkusel 248 nm ja ArF-laser 193 nm lainepikkuse juures. Kuigi F2laserid on ka saadaval, tootes 157 nm valgust, ei ole nad praktilised, kuna on madala võimsusega ja degradeerivad läätsematerjale väga kiiresti.
EksperimentaalmeetodidLisaks uutele valgusallikatele parandavad lahutusvõimet fotolitograafias modernsed tehnikad, nagu immersioonlitograafia ja mitmekordne kirjamine (multiple patterning), kus kasutatakse mitut fotomaski. Immersioonlitograafia on tehnika, kus kasutatakse vedelikku läätse ja pooljuhtplaadi vahel, et vastavalt ülevalnimetatud valemile suurendada lahutusvõimet. Vältimaks uutele tehnoloogiatele üleminekust tulenevaid kulutusi, laenasid tootjad selle tehnika mikroskoopiast, kus kasutati avaarvu suurendamist immersioonvedeliku abil. See töötab, kuna avaarv on maksimaalse nurga, mille juures valgus läätse siseneda saab, ja keskkonna murdumisnäitaja funktsioon. Reeglina on vedelikuks vesi murdumisnäitajaga kuni ~1,4 ning seda hoitakse pidevas tsirkulatsioonis, et eemaldada soojusest tingitud kõrvalekaldeid. Kasutades veelgi suurema murdmisnäitajaga vedelikke, on võimalik avaarvu suurendada. Praegu tootmises olevad masinad suudavad just äsja mainitud tehnikate tõttu toota mikrokiipe, kus väiksema elemendi karakteristlik mõõde on 22 nm. Tänapäeva teadus uurib ka fotolitograafia alternatiive, milleks on näiteks elektronkiirlitograafia, röntgenlitograafia ja muud.