Otsing sellest blogist

UUS!!!

Keskdevon

Blogi, mis räägib kõigest, mis on Leonhardile oluline ja/või huvitav. Kommenteerige, tellige, lugege, nautige ja õppige. Keskdevon Ajastu Aj...

neljapäev, 3. august 2023

Geneetiline mitmekesisus

Blogi, mis räägib kõigest, mis on Leonhardile oluline ja/või huvitav. Kommenteerige, tellige, lugege, nautige ja õppige.

Geneetiline mitmekesisus

Mine navigeerimisribaleMine otsikasti

Geneetiline mitmekesisus tähendab pärilikke molekulaarseid erinevusi populatsiooni sees või populatsioonide vahel.

Enamasti mõistetakse geneetilise mitmekesisuse all liigisiseseid DNA järjestuse erinevusi, aga varieeruvust saab võrrelda ka liikide vahel. Geneetiline mitmekesisus kui evolutsiooniliste muutuste alus on alati olnud põhiküsimus evolutsioonilises geneetikas, aga ka põllukultuuride ja koduloomade aretamises ning meditsiinis. Samuti on geneetiline mitmekesisus kesksel kohal looduskaitsegeneetikas, mille eesmärk on tagada liikide kohastumisvõime muutuvas keskkonnas. Hoolimata olulisest rollist evolutsiooniteoorias ja avastustest molekulaarbioloogias, on geneetilises mitmekesisuses ja selle püsimises veel palju mõistatuslikku.

Uurimise ajalugu

Molekulaarse evolutsiooni ajastu juhatasid sisse kolm peamist avastust:

  1. Clement Markert ja Freddy Moller leidsid 1959. aastal ensüümide molekulaarse mitmekesisuse ja nende tähtsuse geneetikas, füsioloogias, arengus ja evolutsioonis;
  2. Emile Zuckerkandl ja Linus Pauling identifitseerisid 1965. aastal valkude järjestuste varieeruvuse liikide vahel, mille tulemusena postuleeriti molekulaarne kell;
  3. 1966. aastal hindasid Richard LewontinJohn Lee Hubby ja teised ensüümide varieeruvuse äädikakärbsel ja Harry Harris inimesel.

Molekulaarbioloogilised saavutused võimaldasid iseloomustada indiviidide, populatsioonide ja liikide geneetilist mitmekesisust. Esmalt selgusid suhted geenide ja valkude vahel, edaspidi tuumasisesed ja tuumavälised kodeerivad ja mittekodeerivad DNA regioonid, geenide, geenidevaheliste alade (intergenic spacers) ja geeniperekondade struktuur, avaldumine, funktsioon, mehhanismid ning evolutsioon. Selleks kasutati rekombinantse DNA meetodeid.

Edasijõudmised molekulaarsetes uuringutes leidsid aset tänu uute laboratoorsete meetodite kasutuselevõtule. Mõjukaimad tehnoloogiad on olnud: valkude elektroforees 1960ndate lõpus ja 1970ndatel,rakutuuma ja mitokondriaalse DNA restriktsioonifragmentide pikkuse polümorfismi (RFLP) analüüsid 1970ndate lõpul ja 1980ndatel, DNA sõrmejäljed 1980ndate keskpaigast lõpuni ja DNA sekveneerimine polümeraasi ahelreaktsiooni (PCR) abil 1990ndatel.

Võrdleva genoomika ja genoomiuuringute üks eesmärke on juhtida tähelepanu evolutsiooniliste muudatuste ning bioloogilise info avaldumise, tähenduse, edastamise ja regulatsiooni geneetilistele alustele.

Geneetilise mitmekesisuse tähtsus

Geneetilise mitmekesisuse funktsiooni populatsioonis on selgitanud paljud uuringud. Rikkalik genofond pakub looduslikule valikule materjali, et valida paremini kohastunud genotüüpe. Keskkonna muutumise korral võimaldavad variatsioonid geenides genereerida muutusi organismi fenotüübis, et muuta organismi kohasemaks uutes oludes. Populatsioonides, kus on kõrge geneetiline mitmekesisus, on rohkem alleelivariante, mille hulgast saab looduslik valik sagedasemaks muuta kõige sobivamad. Seega on geneetiline mitmekesisus tähtis evolutsiooni toimumiseks. Madala geneetilise mitmekesisusega liikidel on suurem risk välja surra. Madal geneetiline mitmekesisus ei pruugi põhjustada ainult populatsiooni kohastumisvõime langust, vaid ka tõsta energeetilisi kulutusi ning tuua kaasa homöostaasi ja produktiivsuse vähenemise. Geneetiline mitmekesisus tagab geneetiliste distantside esinemise liigisiseselt ja liikide vahel. Teadmised sellest teevad võimalikuks liikide ja tüvede identifitseerimise geneetilise profiili alusel, fülogeneesipuude rajamise, on abiks looduskaitse majandamisel, põllumajanduses ja meditsiinis.

Young Cheetahs.jpg

Näiteid geneetilise mitmekesisuse ökoloogilisest olulisusest

  • Meemesilaste kolooniates avaldab geneetiline mitmekesisus positiivset mõju. Kõrge mitmekesisusega kolooniad säilitavad vastusena temperatuuri muutustele edukamalt ühtlast temperatuuri kui need, kus mitmekesisus on madal. Ilmselt on põhjuseks tööliste erinevused geenides, mis määravad temperatuuri, millest alates hakkab neil avalduma vastav käitumine pesatuulutamiseks.
  • Põlluviljade monokultuurides on taimed geneetiliselt väga sarnased ja see suurendab nende vastuvõtlikkust haigustekitajatele. Kui peremeest patogeeni vastu kaitseva alleeli sagedus on kõrge, siis juhul, kui patogeen muutub võimeliseks kaitsest läbi murdma, saab ta edukalt levida. Näiteks 1840ndatel Iirimaad laastanud näljahäda oli põhjustatud kartulite epideemiast. Kartulisorti „lumper“ nakatas mädanikku põhjustav protist Phytophthora infestans.
  • Geparditel on võrreldes teiste suurte kaslastega madalam reproduktiivsus ja suurem vastuvõtlikkus haigustekitajatele. Selle põhjuseks arvatakse olevat madal geneetiline mitmekesisus. Molekulaarsete analüüside tulemused näitasid, et gepardid on läbinud kaks populatsiooni pudelikaela. Esimene kord 10 000 aastat tagasi ja teine viimase 100 aasta jooksul.

Geneetilise mitmekesisuse võimalikud allikad

Protsessid, mis põhjustavad geneetilist varieeruvust:

  • Geneetilised mutatsioonid 
  • Homoloogiline rekombinatsioon suguliselt paljunevate organismide meioosis, kui kaks homoloogilist kromosoomi vahetavad võrdse pikkusega osi ning tekivad rekombinantsed kromosoomid.
  • Horisontaalne geeniülekanne, mis esineb sagedasti näiteks bakteritel. Bakterid saavad DNA-d omastada väliskeskkonnast transformatsiooni teel, teistelt bakteritelt kas viiruste vahendatud transduktsiooni või bakterirakkude vahelist kontakti eeldava konjugatsiooni teel.
  • Polüploidsus – organismil on rakus homoloogilisi kromosoome rohkem kui kaks. Seega on ka ristsiirde tulemusena tekkiv geneetiline varieeruvus suurem.

Geneetilise mitmekesisuse säilimine looduses

Geneetilise mitmekesisuse säilimine looduslikes populatsioonides on olnud evolutsioonilise geneetika keskne probleem alates valkude polümorfismi avastamisest. Nüüdseks on teada, et ainult juhuslikkusel põhinevad seletused, mis seovad heterosügootsust peamiselt populatsiooni suuruse efektidega, ei ole realistlikud. Populatsioonid on abiootiliste (nt kliima) ja biootiliste (nt. parasiidid, patogeenid, konkurents) faktorite tõttu harva tasakaaluseisundis. Seetõttu esineb ka dünaamiliselt muutuvate looduslike populatsioonide geneetilises mitmekesisuses järske tõuse ja langusi ökoloogilise surve mõjul. Peamised mudelid selgitavad geneetilise mitmekesisuse püsimist looduses pigem seoses keskkonna heterogeensuse (erinevad nišid) ja survega kui efektiivse populatsiooni suuruse ja geenivooluga. Looduslik valik tundub olevat põhiline geneetilist mitmekesisust säilitav evolutsiooniline jõud.

Geneetilise mitmekesisuse määratlemine

Geneetilist mitmekesisust võib defineerida ja hinnata mitmeti. Levinumad geneetilise mitmekesisuse mõõdupuud on järgmised:

  • alleelide mitmekesisus – ühendab informatsiooni alleelide arvu ja suhtelise sageduse kohta lookuses. Seda mõõdetakse tavaliselt molekulaarsete markerite abil, mis on eeldatavasti neutraalsed;
  • alleelide keskmine arv lookuses;
  • genotüüpide arv populatsioonis;
  • heterosügootsus – kaht erinevat alleeli sisaldavate lookuste protsent;
  • nukleotiidide mitmekesisus – keskmine nukleotiidsete erinevuste arv lookuses kahel populatsioonist juhuslikult valitud isendil;
  • polümorfsete lookuste protsent;
  • geneetiline dispersioon ehk muutlikkus – muutlikkus fenotüübis avalduva tunnuse osas, mis on põhjustatud geneetilistest erinevustest;
  • päritavus – kogu geneetilise muutlikkuse suhe kogu muutlikkusesse.
Inimese genoom

Uurimismeetodid

Valkude polümorfismi uurimine

1955. aastal võeti kasutusele valkude elektroforees, tehnika, mis võimaldab eraldada proteiine nende erineva liikuvuse järgi elektriväljas. Ensüümi variante, mis erinesid liikuvuse poolest elektroforeesil, aga olid kodeeritud sama lookuse poolt, hakati nimetama allosüümideks. Allosüümide kasutamisel populatsioonide geneetilise mitmekesisuse uuringutes ilmnesid aga mõningad puudused. Selgus, et tegelik geneetiline varieeruvus jääb avastamata geneetilise koodi kõdumise tõttu. Sünonüümsed nukleotiidide asendused, nn vaikivad mutatsioonid, muudavad koodoni DNA järjestust, aga ei põhjusta aminohappe asendumist ja seega ei mõjuta valku. Ka siis, kui on tegemist mittesünonüümse nukleotiidi asendusega, mis muudab aminohappelist järjestust, on uus alleel elektroforeesil tuvastatav ainult siis, kui ta on muutnud elektrilaengut, massi või struktuuri. Paljudel aminohappe asendustel sellist mõju pole.

DNA polümorfismi uurimine

Edasised arengud geneetiliste erinevuste uurimises võimaldasid otsesemalt analüüsida DNA järjestusi. Esimene selline tehnoloogia oli RFLP, mille puhul võrreldi restriktsiooni fragmentide pikkuse erinevusi. Mõjukaimaks abivahendiks geneetilise mitmekesisuse mõõtmisel sai PCR. Võrdlev genoomika, mis võimaldab hinnata erinevate taksonoomiliste gruppide sugulust geneetiliste erinevuste põhjal, on teinud suuri arengusamme. Mitmesugustel organismidel sekveneeritud geenijärjestuste kohta on koostatud mahukaid andmebaase. Allpool on toodud levinumad DNA mitmekesisuse uurimiseks kasutatavad meetodid.

  • RFLP (restriction fragment length polymorphism) – restriktsioonifragmentide pikkuse polümorfism. Meetod selleks, et identifitseerida polümorfismi DNA järjestustes, kasutades restriktsiooni ensüüme ja geelelektroforeesi. Mutatsioone sisaldava DNA lõikamisel restriktaasiga tekivad teistsuguse pikkusega fragmendid võrreldes esialgse DNA-ga.
  • RAPD (randomly amplified polymorphic DNA) – juhuslikult amplifitseeritud polümorfne DNA. DNA järjestustes esineva polümorfismi tuvastamiseks kasutatakse PCR-is suvalisi praimereid ja produkte uuritakse elektroforeesi abil.
  • AFLP (amplified fragment length polymorphism) – amplifitseeritud fragmentide pikkuse polümorfism. Meetod põhineb DNA järjestuste polümorfismi hindamisel. Restriktsioonifragmente amplifitseeritakse PCR-i abil.
  • Mini- ja mikrosatelliide uuringud. Mini- ja mikrosatelliidid on tandeemsed kordusjärjestused, mille pikkuses esineb polümorfism. Üksteisest erinevad need nukleotiidide arvu, mutatsiooniprotsesside ja kromosoomidesse jaotumise poolest, aga kahe klassi vaheline piir ei ole defineeritud.
  • SNP (single mucleotide polymorphism) – erinevaid nukelotiide sisaldavate alleelide esinemine DNA järjestuse kindlas punktis.
  • Mikrokiibid (microarrays) – suur hulk (tavaliselt tuhandeid) erinevaid DNA või oliginukleotiidseid järjestusi on üksteise järel ritta seatud tahkel substraadil. Kasutatakse hübridisatsiooni eksperimentides, et uurida SNP-sid ja geeniekspressiooni mustreid.

kolmapäev, 2. august 2023

GENEETIKA: Dihübriidne ristamine

Blogi, mis räägib kõigest, mis on Leonhardile oluline ja/või huvitav. Kommenteerige, tellige, lugege, nautige ja õppige.
Dihübriidsel ristamisel vaadeldakse kahe erinevates kromosoomipaarides paikneva, teineteisest sõltumatu alleelipaari pärandumist. 
Mendeli 3. sõltumatu lahknemise seadus

Homosügootide ristamisel moodustuvad F2 põlvkonnas vanemate tunnuste kõikvõimalikud kombinatsioonid, kui geenialleelid asuvad erinevates kromosoomides (teineteisest piisavalt kaugel ).

Erinevates kromosoomides paiknevad geenid päranduvad üksteisest sõltumatult. 9:3:3:1 = fenotüübiline lahknemissuhe domineerimise korral mõlemas alleelipaaris.
Ristati valge lühisabaline kass pruuni pikasabalise kassiga. F1 isendid olid kõik pruunid ja pikasabalised. 
 Koosta pärandumisskeem
 Määra vanemate ja F1 ning F2 järglaste genotüübid.
Dihübriidne ristamine:
1. Pruunisilmse tumedajuukselise mehe ja sinisilmse heledajuukselise naise lapsed olid kõik pruunide silmade ja tumedate juustega. Milliste tunnustega ja millise tõenäosusega võivad olla lapselapsed. Kui pruunisilmse tumedapäise tütre mees on  samuti pruunisilmne ja tumedapäine ning mõlema tunnuse suhtes heterosügoot.
A – brünett
a – blond
B – pruunisilmne
b - sinisilmne
P: AABB x aabb
F1: AaBb
P: AaBb x AaBb
V: 9/16 brünett ja pruunisilmne; 1/16 blond ja sinisilmne; 3/16 blond ja pruunisilmne; 3/16 brünett ja sinisilmne 
Mendeli III seaduse tõttu võib dihübriidset ristamist vaadelda kahe monohübriidse ristamisena.
Sel viisil monohübriidsetel ristamistel saadud genotüüpide esinemise tõenäosused korrutatakse, domineerimise korral näiteks: (3:1)x(3:1) = 9:3:3.1
2. Ristati must pikakarvaline merisiga analüüsivalt valge lühikese karvaga meriseaga. F1 isendid olid pooled mustad pikakarvalised, pooled mustad lühikese karvaga. Määrake vanemate ja F1 järglaste genotüübid. 
3. Inimesel pruun silmavärvus domineerib siniste üle, paremakäelisus vasakukäelisuse üle, kusjuures nimetatud geenid paiknevad eri kromosoomides. Millised lapsed võivad sündida kui 
 pruunisilmne paremakäeline (mõlema tunnuse suhtes homosügootne) abiellub sinisilmse vasakukäelisega, 
b) mees on sinisilmne ja paremakäeline, naine pruunisilmne ja paremakäeline (mõlema tunnuse suhtes heterosügootne)?
4. Mõlemal vanemal on vererühmad AB, Rh+. Millise tõenäosusega võiks neil sündida poeg vererühmadega B, Rh–? Milliste vererühmadega lapsi ja millise tõenäosega võib selles peres veel sündida? 
P: IAIBRr x IAIBRr
Vastus: 6/16 AB Rh+; 3/16 A Rh+; 3/16 B Rh+; 2/16 AB Rh-;1/16 A Rh-; 1/16 B Rh-
Dihübriidne ristamine:
5. Punaseõielist kitsalehelist lõvilõuasorti ristati valgeõielise laialehise sordiga. Esimese põlvkonna hübriidtaimed olid kõik roosaõielised ja keskmise lehelaiusega. Missuguseid taimi on oodata F2 põlvkonnas? Missugune osa F2 taimedest peaks sarnanema kummagi lähtesordiga? 
Ā Ā – punane
aa – valge
Āa – roosa
BB – kitsaleheline
bb – laialeheheline
Bb – keskmise lehe laiusega
P: ĀĀBB x aabb
F1: ĀaBb
P: ĀaBb x ĀaBb

V: 1/16 punane kitsalehine  (ĀĀBB) ja 1/16 valge laialehine (aabb)
Dihübriidne ristamine:
6. Lainesjuukseline bariton abiellus lainesjuukselise metsosopraniga. Vanemate mõlemad tunnused olid intermediaarsed. Missugune on tõenäosus, et nende laps on 
 lainesjuukseline bass 
b) lokkisjuukseline sopran? 
(Bass, bariton, tenor; Alt, metsosopran, sopran ). 

teisipäev, 1. august 2023

GENEETIKA: Monohübriidne ristamine

Blogi, mis räägib kõigest, mis on Leonhardile oluline ja/või huvitav. Kommenteerige, tellige, lugege, nautige ja õppige.
Geneetika mõisted
Pärilikkus – organismide võime anda endasarnaseid järglasi.
Geneetika – teadusharu, mis uurib pärilikkust ja muutlikkust.
Geen – DNA lõik, mis määrab ühe RNA molekuli sünteesi (ja ka tavaliselt ühe tunnuse).
Alleel – geeni üks esinemisvorm (geeni erivorm). Nad asuvad homoloogiliste kromosoomide kindlas piirkonnas – lookuses.
Dominantne alleel – alleel, mille poolt määratud tunnus alati avaldub (tähistatakse suurtähega nt. A). 
Retsessiivne alleel – alleel, mille poolt määratud tunnus avaldub vaid dominantse alleeli puudumisel (tähistatakse väiketähega nt. a). 
Homosügoot – organism/rakk, kellel on vaadeldava tunnuse suhtes identsed alleelid, (alleelipaari seisund, kus mõlemad alleelid on kas dominantsed või retsessiivsed). Nt. AA või aa
Heterosügoot – organism/rakk, kellel on vaadeldava tunnuse suhtes erinevad alleelid (ühe geeni erinevad alleelid). Nt. Aa
Geenifond – liigi või populatsiooni geenide kogum
Genotüüp – organismi geenide kogum
Fenotüüp – organismi avaldunud tunnuste kogum
Polüalleelsus – geen esineb populatsioonis rohkem kui kahe variandina (üle kahe alleeli organismirühmas)
Polügeensus – ühte tunnust määrab palju geene
Intermediaarsus – domineerimisnähtus puudub, tunnuste vahepealne avaldumine
Kodominantsus – avalduvad mõlemad tunnused
Gregor Johann Mendel (1822-1884)
Austria munk, kes pani aluse geneetikale. 
Ta tegi katseid hernestega, et selgitada tunnuste pärandumist. Valides hoolikalt, milliseid taimi omavahel ristata, avastas ta, et tunnused päranduvad paarikaupa.
Ta leidis ka, et tavaliselt avaldub fenotüübis ainult üks tunnus igast paarist. 
Geneetikaülesannete sümbolid:
Mendel võttis kasutusele geneetika ülesannete ja skeemide sümbolid (kasutusel tänapäevani).
  P – parentes (vanemad)
  F – filia, filialis (tütar ja poeg)
  x – ristamine
F1, F2, F3 – põlvkonnad.
Monohübriidne ristamine
Monohübriidse ristamise korral erinevad vanemad ühe tunnusepaari poolest.
- vaadeldakse vaid ühe tunnuse kujunemist järglastel.

Mendeli esimene seadus ehk ühetaolisuse seadus 
Homosügootide omavahelisel ristamisel moodustunud esimene järglaspõlvkond on genotüübilt samad, (heterosügootsed) ja fenotüübiliselt sarnased
     sile                  krobeline
S-genotüüp
s-Fenotüüp
Ss-F1
siledad
Mendeli teine ehk lahknemisseadus 
Homosügootide omavahelisel ristamisel toimub järglaspõlvkonnas F2 tunnuste lahknemine seaduspäraselt (genotüübilises suhtes 1:2:1, fenotüübilt 1:2:1 või domineerimise korral 3:1 )


Järglastest genotüübilt: 
1 osa on dominantseid homosügoote (BB), 
2 osa heterosügoote (Bb) ja 
1 osa retsessiivseid homosügoote (bb).
Mendeli monohübriidne ristamine:

Herneste tunnused, mille pärandumise uurimise põhjal Mendel on seaduspärasused sõnastanud:

Inimese dominantsed ja retsessiivsed tunnused:

Analüüsiv meetod:
Taimede või loomade heterosügootsuse määramiseks. 
 Dominantse tunnusega isend ristatakse kaksikretsessiivse tunnusega isendiga. 
 Kui järglased on kõik dominantse tunnusega, on uuritav dominantse tunnusega isend homosügoot – sellisel juhul on tegemist tõu- või sordipuhta liigiga. 
 Kui järglaskonnas toimub lahknemine ja saadakse erinevate tunnustega organismid, siis järelikult on uuritav dominantse tunnusega organism selle tunnuse suhtes heterosügoot – sellisel juhul ei ole tegemist tõu- või sordipuhta liigiga.
Genealoogiline meetod:
Inimese sugupuu abil tema genotüübi väljaselgitamine. 
 Selgitatakse kas inimene on selle tunnuse suhtes homosügoot või heterosügoot. 
 Peamiselt kasutatakse pärilike haiguste riski tuvastamiseks
 Inimese puhul analüüsivat ristamist kasutada ei saa.
Ülesanded:
Sinisilmne mees abiellus pruunisilmse (homosügoot) naisega. Mis värvi silmadega sünnivad nende lapsed? Koosta ristamise genotüübiline skeem!

P: aa x AA
a - sinisilmne
A - pruunisilmne
Vastus: Lapsed on kõik pruunisilmsed
2. ülesanne:
Pruunisilmne mees ja pruunisilmne naine (mõlemad on heterosügoodid) saavad lapse. Kui suur on tõenäosus, et lapsel on sinised silmad? Koosta ristamise genotüübiline skeem!
3. ülesanne:
Sinisilmne mees abiellus naisega, kellel on pruunid silmad. Perekonnas on 2 tütart, üks siniste, teine pruunide silmadega. Milliseid lapsi võiksid tütred saada abielludes sinisilmsete meestega, kui pruun silmavärvus domineerib sinise üle? Koosta ristamise genotüübiline skeem.
4.ülesanne:
Ristati kahte mustakarvalist merisiga. Saadi 3 poega, kellest 2 olid mustakarvalised ja üks pruunikarvaline. Koosta ristamisskeem! Kas tegemist oli tõupuhaste merisigadega?
P: Aa x Aa
Vastus: Ei ole tõupuhtad, kuna esines ka pruune sigu
5. ülesanne:
Eesmiste purihammaste puudumine pärandub dominantselt. Perekonnas, kus mõlemal vanemal esines nimetatud puue, sündis normaalne tütar. Kui suur on tõenäosus, et nende järgmisel lapsel eesmised purihambad puuduvad?
6.ülesanne:
 Nudipäist veisetõugu ristati sarvilise tõuga. Hübriidid olid kõik nudid. Neid ristati omavahel ja F2 põlvkonnas saadi 52 vasikat. Milline on teoreetiline oodatav arvuline lahknemine genotüüpide ja fenotüüpide järgi?
7.ülesanne:
 Paaritades nudi pulliga (dom. tunnus) sarvilisi lehmi saadi Ühes karjas 117 nudi ja 121 sarvedega vasikat. Joonistada genotüübiline skeem. Kas kahe sarvedega looma ristamisel võib saada nudisid järglasi? Nudide ristamisel sarvedega järglasi? Tehke vastavad skeemid!
Intermediaarsus:
8.ülesanne:
 Ristatakse punast lillhernesorti valgeõielise sordiga. F1 põlvkonnas on kõik hübriidid roosaõielised. Milliseid lillherneid on oodata F2 põlvkonnas? Koosta ristamisskeem!
9.ülesanne: Albinismigeen domineerib valge värvuse üle. Missugune tuleb genotüübiline ja fenotüübiline lahknemine F1 põlvkonnas kui omavahel ristati kahte albiinot valge värvusgeeni suhtes heterosügootset hobust? (On teada, et homosügootsed albiinod hukkuvad juba looteeas).
10.ülesanne: Kui suur on tõenäosus, et heterosügootsete pruunisilmsete vanemate kahest lapsest on üks sinisilmne ja teine pruunisilmne?
11. Ristatakse punast lillhernesorti valgeõielise sordiga. F1 põlvkonnas on kõik hübriidid roosaõielised. Milliseid lillherneid on oodata F2 põlvkonnas? Koosta ristamisskeem!
P:   ĀĀ x aa
aa - valge
ĀĀ - punane
Vastus: Saadakse punaseid, valgeid ja roosasid lillherneid
12. ülesanne: Kodominantsus: Ristatakse valge kana ja pruun kukk. F1 põlvkonnas on kõik tibud pruuni-valgekirjud. Milliseid tibusid on oodata F2 põlvkonnas, kui F1 pruunivalge kana ristatakse pruuni kukega? Koosta ristamisskeem!
13.ülesanne: Punaseviljalise aedmaasika ristamisel valgeviljalise sordiga on F1 hübriidid roosaviljalised. Milliseid tulemusi on oodata F1 hübriidi ristamisel punaseviljalise sordiga?
14.ülesanne: Peres on vanemad laineliste juustega (Āa). Kui suur on tõenäosus, et sellesse perre sünnivad järgnevate fenotüüpidega lapsed:
a) laineliste juustega
b) lokkisjuukseline või laineliste juustega
c) sirgete juustega tütar?

esmaspäev, 31. juuli 2023

GENEETIKA: Vererühmade pärandumine

Blogi, mis räägib kõigest, mis on Leonhardile oluline ja/või huvitav. Kommenteerige, tellige, lugege, nautige ja õppige.
Vererühmad
ABO süsteem: Vastavalt valkude (antigeenide) erinevusele punaste vererakkude pinnal:
0 vererühm
A vererühm
B vererühm
AB vererühm


Doonor:

Alleelid IA ja IB domineerivad alleeli i üle! IA ja IB on omavahel kodominantses suhtes. Vererühm on polüalleelse tunnuse näide (populastioonis üle kahe sama geeni alleeli). I on dominantne alleel ja i on retsessiivne alleel. Dominantsed tunnused avalduvad alati. Retsessiivne tunnus avaldub ainult juhul kui kokku saavad kaks retsessiivset alleeli. 

sinine - A-alleel (kodominantne)
roheline - B-alleel (kodominantne)
valge - 0-alleel (retsessiivne)
Reesusfaktor:
Umbes 85 % inimestel esineb vere punalibledel asuv valguline D-antigeen ehk reesusfaktor, nad on reesuspositiivsed. 
Reesusnegatiivsetel see puudub.
Reesusfaktori olemasolu (Rh+) on dominantne tunnus 
ning puudumine (Rh-) retsessiivne tunnus
Reesuskonflikt:
 Tekib ema ja loote vahel, juhul kui ema veri on reesusnegatiivne ja loote veri reesuspositiivne. 
 Võõra antigeeni sattudes ema organismi hakatakse selle vastu tootma antikehi. 
 Järgneva reesuspositiivse loote puhul läbivad antikehad platsenta ning hakkavad loote punaliblesid kui võõrvalkudega rakke lammutama. 

Ülesandeid:
1. Millised võivad olla laste vererühmad, kui ema on A vererühmaga homosügoot ja isa B vererühmaga heterosügoot? Määra kõigi isikute genotüübid.
2. Vanemate vererühmad on 0 j AB. Millise vererühmaga võivad olla lapsed? Määra kõigi isikute genotüübid. 
3. Emal on A vererühm, lastel 0 ja B vererühm. Milline on isa vererühm? Millise vererühmaga lapsi võiks neil üldse olla? Määra kõigi isikute genotüübid.
4. Milliste veregruppidega lapsed sünnivad, kui vanemad on heterosügootsed? 
5. Milliste genotüüpidega vanematel võib sündida reesusnegatiivne laps? 
6. A-vererühmaga mees, kelle vanemate vererühmad on A ja AB, abiellus naisega, kellel on AB vererühm, kuid kelle õel on 0-vererühm. Neil sündis B-vererühmaga laps. Koostage pärandumisskeemid, millel näitate kõigi isikute genotüübid ning määrake naise vanemate vererühmad.
7. 1940. aasta kuulsal Charlie Chaplini isaduse tuvastamise protsessil tuli lahendada järgmine probleem. Lapsel oli vererühm B, tema emal vererühm A ja näitleja vererühmaks oli 0. Kohus leidis, et Charlie Chaplin ei saanud mingil juhul olla lapse isaks. Kas lapse emal oleks põhjust see otsus vaidlustada?

reede, 28. juuli 2023

Modifikatsiooniline muutlikkus

Blogi, mis räägib kõigest, mis on Leonhardile oluline ja/või huvitav. Kommenteerige, tellige, lugege, nautige ja õppige.
GEENID + KESKKOND
Modifikatsiooniline ehk mittepärilik muutlikkus on määratud geenide ning keskkonna koosmõjuga ning viib konkreetsete tunnuste avaldumisele (fenotüüp).
 Järglastele päranduvad tunnuste kujunemise piirid. 
Vegetatiivsel paljunemisel on tütartaimed genotüübilt samasugused, tunnuseid mõjutavad keskkonnategurid.
Keskkonnategurid, mis mõjutavad geneetiliselt ühesuguste taimede kasvu – toitained, vesi, päike jm. Alljärgnevalt on muudetud vaid ühte tegurit (toitainete kogust mullas) -  keskkonnamõju taimele on märgatav! 

Toitainete sisaldus normaalne                                                Toitainete sisaldus vähene
Reaktsiooninorm
Reaktsiooninorm – tunnuse (fenotüübilise) muutumise määr.
Variatsioonirida – tunnuse muutumise määra kajastav looduslike objektide järjestatus (näiteks ühe puu erineva suurusega lehed). 
Variatsioonikõver – variatsioonirea graafiline esitus.
Liigi geenifond (liigi kõikide geenialleelide kogum; genofond) määrab ära reaktsiooninormi laiades piirides.
Üksikisendi genotüüp (isendi geenide kogum) aga konkreetse isendi reaktsiooninormi.
Kaksikute meetod
Ühemunakaksikute tunnuste erinevused ja sarnasused võimaldavad eristada pärilikku ja mittepärilikku muutlikkust.
Tunnused sõltuvalt muutlikkuse määrast
Suures ulatuses muutuvad:
Pikkuskasv, kehamass, lihaste treenitus, intellekt (laia reaktsiooninormiga tunnused) 
Vähesel määral:
Silmavärvus, silmade suurus, juuste läbimõõt (kitsa reaktsiooninormiga tunnused) 
Ei muutu üldse:
Silmapõhja muster, sõrmejäljed, sugu (inimesel), vererühmad.
Tunnused sõltuvalt kasulikkusest
Kasulikud:
tingitud refleksid ehk omandatud  käitumisharjumused, kaitsevärvus loomadel.
Kahjulikud:
päriliku eelsoodumusega haigused, arenguhäired, jäävvigastused.
Kopsuvähki haigestumine on seotud geenide ja keskkonnaga (tubakasuits).
Tunnused sõltuvalt kestvusest
Pöörduvad:
Kaovad mõni aeg peale põhjustava teguri kadumist. Päevitus, mälu, lihaste treenitus.
Pöördumatud: 
Säilivad elu lõpuni. Väärarengud, jäävigastused, luude deformeerumine. 

neljapäev, 27. juuli 2023

Mendeli hübridiseerimiskatses ilmnenud seaduspärasused

Blogi, mis räägib kõigest, mis on Leonhardile oluline ja/või huvitav. Kommenteerige, tellige, lugege, nautige ja õppige.

Sissejuhatus

Tänapäeval ei kujutaks me ette geneetikat ilma DNA uuringuteta. Geneetilised uuringud on muutunud nii lihtsaks ja kättesaadavaks, et igal inimesel on võimalik saata enda DNA laborisse, et saada rohkem teada oma päritolu kohta või uurida pärilike haiguste eelsoodumuse kohta. Kuid kas teadsite, et geenide pärandumise seaduspärad avastati ligikaudu sada aastat enne seda, kui mõisteti DNA rolli päriliku info salvestamisel? 

Õpieesmärgid

Selle peatüki lõpuks: 

  • kirjeldate Mendeli katsetes ilmnenud seaduspärasid;
  • seostate Mendeli katsetes ilmnenud seaduspärasid nende geneetilise põhjendusega; 
  • lahendate Mendeli seadustel põhinevaid ülesandeid; 
  • selgitate Mendeli seaduste rakendusvõimalusi. 

 

Mendeli katsed

Esimesed avastused pärilikkuse seaduspärade kohta tegi Tšehhi munk ja kooliõpetaja Gregor Mendel juba 19. sajandi keskel. Enne Mendeli avastusi usuti, et vanemate tunnused segunevad järglastes sarnaselt nagu sinine ja kollane värv annavad segades rohelise. Mendel arvas seevastu, et pärilikkus tuleneb teatud muutumatute pärilikkusüksuste edasi andmisest. Tema teooria kohaselt on organismis igast tunnusest kaks versiooni, mille organism saab oma vanematelt. Oma teooria katsetamiseks ristas ta kloostriaias herneid ning uuris tunnuste pärandumist (joonis 3.3.5.1.). Pärilikkuse uurimist selliste meetoditega, mida kasutati enne DNA rolli avastamist, nimetatakse tänapäeval klassikaliseks geneetikaks. 

Pilt: Gregor Mendel
Pilt: hernetaimed

Joonis 3.3.5.1. Gregor Mendel selgitas hernetaimi kasvatades ja uurides välja põhilised tunnuste pärandumise seaduspärad. 

Mendeli katsed hernestega

Mendel uuris oma katsetes seitsme tunnuse pärandumist: herneseemnete värv ja kuju, kauna värv ja kuju, õite värv ja asetus ning taime kasv. Esialgu ristas ta taimi, mis erinesid omavahel ainult ühe tunnuse poolest. Esmalt kasvatas ta eri tunnustega taimi eraldi peenardel. Seeläbi selgitas ta välja, et ühest puhtast sordist taimed annavad alati täpselt samasuguseid järglasi, näiteks rohelise herne taimedelt saab alati roheliste seemnetega järglasi (joonis 3.3.5.2.). 

Pilt: tunnused, mida Mendel uuris

Joonis 3.3.5.2. Mendel ristas erinevate tunnustega herneid ning uuris tunnuste pärandumist. 

Seejärel ristas Mendel omavahel erinevaid hernesorte, näiteks kollaseid herneid rohelistega. Katse tulemusena selgus, et igast tunnuste paarist leidus üks domineeriv tunnus, mis pärast ristamist saadud järglastes avaldus. Puhtasse sorti kuuluvate kollaste ja roheliste herneste ristamisel saadi ainult kollaseid herneid, krobelisi ja siledaid herneid ristates oli tulemuseks aga vaid siledad herned (joonis 3.3.5.3.).

Pilt: lilla õite värvus domineerib valge üle, kollane seemne värvus aga rohelise värvuse üle.

Joonis 3.3.5.3. Mendel avastas oma katsete käigus, et igas tunnustepaaris leidus üks domineeriv tunnus. 

Ristates esimese järglaste põlvkonna herneid omavahel sai Mendel aga hoopis teistsugused tulemused. Roheliste ja kollaste herneste ristamisel saadud kollaseid herneid omavahel uuesti ristates olid järglastest ¾ kollased ning ¼ rohelised (joonis 3.3.5.4.). Sarnased osakaalud olid iseloomulikud kõigi vaadeldud tunnuste puhul. Sellest järeldas Mendel, et teises põlvkonnas tunnused lahknevad uuesti. 

Pilt: esimesel ristamisel on kõik herned sarnased, teisel ristamisel aga tunnused lahknevad kindlates suhetes.

Joonis 3.3.5.4. Kollaste ja roheliste herneste ristamisel saadud järglased on kõik ühetaoliselt kollased. Saadud kollaseid herneid omavahel ristates lahknevad tunnused uuesti ning 1/4 saadud hernestest on rohelised. 

Simulatsiooni abil saate ka ise Mendeli katseid läbi viia proovida. Selleks vajutage esmalt "Breed" ehk rista, et luua kaks juhuslikku vanemat, ja uuesti "Breed", et näha nende vanemate järglasi. Seejärel valige kaks järglast, keda soovite omavahel ristata, ning vajutage taaskord "Breed", et näha järgmise põlvkonna järglasi. Saate protsessi korrata nii mitu korda kui soovite, kuid 6 põlvkonna järel hakkavad vanemad põlvkonnad kaduma. Kui soovite alustada simulatsiooni uuesti uute juhuslike vanematega, siis uuendage lehte või sulgege see ja avage uuesti. Kas oskate simulatsiooni abiga leida samad seaduspärad, mis Mendel oma katsetega tuvastas?

Mendeli seadused

Tänapäeval saame Mendeli avastusi põhjendada teadmistega geenide toimimisest. Teame, et organismi keharakkudes on kahekordne kromosoomistik ning igast geenist on kaks versiooni, millest üks pärineb emalt, teine isalt. Selliseid geenide versioone nimetatakse alleelideks. Kui organismil on mingi geeni mõlemad alleelid ühesugused, nimetatakse seda homosügootsuseks, kui erinevad, siis heterosügootsuseks. Mendeli esimesed katsed olid sordipuhaste taimedega, mis andsid ainult ühesuguste tunnustega järglasi, järelikult oli seal tegemist homosügootsete ehk samasuguste alleelidega taimedega. 

Erinevate tunnustega organismide ristamise tulemusi on kõige parem selgitada skeemi abil. Kokkuleppeliselt tähistatakse sellisel skeemil puhtast sordist vanemaid tähega P (ladina keeles parentes ehk vanemad) ning nende järglasi tähega F (ladina keeles filii ehk lapsed). Seda, mitmenda põlvkonna järglastega on tegemist, tähistatakse numbriga, näiteks F1  ja F2. 

Mendeli järgmistes katsetes oli erinevateks alleelideks näiteks seemne kollane või roheline värvus. Tähistades kollast värvust määrava alleeli A tähega ning rohelist värvust määrava alleeli a tähega, ilmneb, et puhtast sordist kollaste herneste alleelid on AA ja roheliste herneste alleelid aa (joonis 3.3.5.5.). Sugurakkude valmimisel jääb igasse sugurakku üks alleel. See tähendab, et kollaste herneste sugurakkudesse jäävad alleelid A ja A, roheliste herneste sugurakkudesse a ja a. Kollase ja rohelise herne sugurakkude liitumisel on seega ainsad võimalikud kombinatsioonid, mis saavad tekkida, Aa, ehk hernes, kus on üks kollast ning üks rohelist värvust määrav alleel.

Pilt: kollaste ja roheliste puhtast sordist herneste ristamisel kombineeruvad omavahel kollaste herneste A alleel ja roheliste herneste a alleel. Tulemuseks on Aa alleelidega herned, mis on kõik kollased, sest kollane on domineeriv tunnus.

Joonis 3.3.5.5. Kollaste ja roheliste puhtast sordist herneste ristamisel on tulemuseks herned, millel on üks kollast, üks rohelist värvust määrav geenivariant. Kuna kollane on domineeriv tunnus, siis on välimuselt kõik herned kollased. 

Hoolimata sellest, et kõigil Fpõlvkonna hernestel on mõlemad alleelid, on kõik herned väliselt ühetaolised ehk kollased. Järelikult avaldab värvusele mõju ainult üks alleelidest. Seda alleeli, mis ristamise järel avaldub, nimetatakse dominantseks alleeliks, ja teist alleeli nimetatakse retsessiivseks. F1 põlvkonna järglastel on kõigil üks dominantne ja üks retsessiivne alleel ehk nad on heterosügootsed ning kõik järglased on omavahel identsed. Seda järeldust nimetatakse Mendeli esimeseks seaduseks. 

Vaatame nüüd skeemil, mis juhtub, kui ristata omavahel F1 põlvkonna heterosügootseid järglasi, kellel on Aa alleelid ehk üks kollast, teine rohelist värvust määrav alleel. Sugurakkude valmimisel jääb kummalgi hernel osadesse sugurakkudesse kollast (A) ja teistesse rohelist (a) värvust määrav alleel. Ühe taime sugurakud liituvad teise taime sugurakkudega, järelikult on uues ehk F2  põlvkonnas võimalik kolm erinevat kombinatsiooni: AA, Aa ning aa (joonis 3.3.5.6.). Kuna domineeriv tunnus ehk kollane värvus avaldub nii AA kui ka Aa kombinatsiooni korral, retsessiivne tunnus ehk roheline värvus aga vaid aa kombinatsiooni korral, on lihtne näha, miks ¾ järglastest on domineeriva ning ¼ retsessiivse tunnusega. Nende tulemuste põhjal on sõnastatud Mendeli teine seadus: F2  põlvkonnas lahknevad tunnused kindlates suhetes. 

Pilt: teises põlvkonnas tunnused lahknevad.

Joonis 3.3.5.6. Fpõlvkonna ristamisel omavahel lahknevad tunnused kindlas vahekorras. 3/4 järglastest avaldub dominantne tunnus ning 1/4 retsessiivne tunnus. 

Uurides mitme erineva tunnusega herneste lahknemist järeldas Mendel ka seda, et tunnused päranduvad üksteisest sõltumatult. Seda seaduspära nimetatakse Mendeli kolmandaks seaduseks. Tänapäeval teame, et see seadus kehtib ainult tunnuste puhul, mida määravad geenid asuvad erinevates kromosoomides või samas kromosoomis, kuid üksteisest kaugel. Lähedal asuvad geenid päranduvad koos, kuna need antakse sama kromosoomiga järglastele edasi. Seetõttu avalduvad osad tunnused enamasti koos. 

Mendeli seaduste rakendusvõimalused

Kuigi Mendeli katsed tuginesid herneste sihipärasele ristamisele, on tema avastatud seadustel palju laiem rakendus. Mendeli seadused kehtivad ka looduses juhuslikult sündivate järglaste puhul, sealhulgas inimestel. Samas tuleb silmas pidada, et mitte kõik tunnused ei pärandu vastavalt Mendeli seadustele. Inimestel on puhtaid Mendeli seaduste kohaselt päranduvaid tunnuseid küllaltki vähe. Paljud tunnustest on määratud mitme geeni poolt. Selliseid tunnuseid nimetatakse polügeenseteks. Polügeensed tunnused on näiteks silmade värv, kasv, kehakaal ja nahavärv (joonis 3.3.5.7.). 

Pilt: kasv on polügeenne tunnus
Pilt: silmavärv

Joonis 3.3.5.7. Kasv ja silmavärv on polügeensed tunnused ehk nende tunnuste määramisel osaleb rohkem kui üks geen. 

Enamikul tunnustest ei suru üks alleel teist täielikult maha. Olukorda, kus heterosügoodil avaldub kahe homosügoodi vahepealne tunnus, nimetatakse intermediaarsuseks. Näiteks saab sageli punaste ja valgete õitega lillede ristamisel roosade õitega järglased. Mõnikord võivad aga mõlema alleeli poolt määratud tunnused avalduda samaaegselt. Seda nimetatakse kodominantsuseks ning siis saadakse punaste ja valgete õitega lillede ristamisel hoopis punase-valge-kirjud lilled (joonis 3.3.5.8.). 

Pilt: punase-valgekirjud õied, näide kodominantsusest
Pilt: punase-valgekirjud õied, näide kodominantsusest
Pilt: roosad õied, näide intermediaarsusest

Joonis 3.3.5.8. Kui punaste ja valgete õitega taimede ristamisel saadakse roosade õitega taim, on tegemist intermediaarsusega, kui aga punase-valgekirjud õied, siis kodominantsusega. 

Mendeli seadused on siiski olulised, kuna võimaldavad leida mitmete haiguste, näiteks daltonismi ehk punarohepimeduse (joonis 3.3.5.9.) ja hemofiilia ehk vere hüübimatuse esinemise tõenäosust järglastel. Selleks on vaja teada, kas vanemad on selle tunnuse suhtes homo- või heterosügootsed. Katseloomade- ja taimede puhul ristatakse selleks dominantsete tunnustega isendit retsessiivsete tunnustega isendiga. Kui järglased on kõik ühesugused, on tegemist homosügootsusega, kui aga toimub lahknemine suhtes 1:3, siis on tegemist heterosügootse vanemaga. Inimeste puhul loomulikult selliseid meetodeid kasutada ei saa, seetõttu tuleb lasta DNA-d analüüsida või uurida oma sugupuud. 

New image

Joonis 3.3.5.9. Daltonismi ehk puna-rohe-pimesuse korral ei suuda inimene eristada punaseid ja rohelisi toone. Sellisel juhul ei ole inimene võimeline pildil olevat numbrit lugema. 

 

Kokkuvõte 

Keharakkudes on igast geenist kaks versiooni ehk alleeli, mis mõjutavad tunnuse avaldumist. Dominatne tunnus avaldub ka heterosügootidel, retsessiivne tunnus ainult homosügootidel. Mendeli seaduste kohaselt päranduvad tunnused üksteisest sõltumatult ning kindla seaduspärasuse alusel. Homosügootsete vanemate ristamisel on Fpõlvkonna järglased kõik heterosügootsed ning ühetaolised, F2 põlvkonna järglastel toimub aga tunnuste lahknemine. Kõik tunnused ei pärandu Mendeli seaduste kohaselt, kuid Mendeli seaduste tundmine aitab mõista mitmete haiguste pärandumist ning arvutada haigete järglaste saamise tõenäosust. 

 

Mõisted

alleel
homosügootsus
heterosügootsus
dominantsus
retsessiivsus
polügeensus
intermediaarsus
kodominantsus