Otsing sellest blogist

UUS!!!

Kisklus

Kisklus  ehk  röövlus  ehk  episitism  ehk  predatsioon  on  röövlooma  ja  saaklooma  vaheline  toitumissuhe . Kiskjad  ehk röövloomad peav...

esmaspäev, 31. märts 2025

Aktiinifilamendid

Aktiinifilamendid ehk mikrofilamendid on eukarüootsete rakkude tsütoskeletis leiduvad aktiinist koosnevad kõige peenemad filamendid. Nad on oma funktsioonilt ülimalt mitmekülgsed, võttes osa raku liikumisest ja kuju muutmisest.

Aktiinifilamendid

Struktuurne polaarsus

Filamendi kasv toimub eelistatult ühest otsast, mida nimetatakse (+) otsaks. See on võimalik seetõttu, et monomeeri konformatsioon muutub pärast lülitumist F-aktiini koosseisu, võimaldades järgmise monomeeri lülitumist soodustatult. Monomeeri lülitumine (-)otsa toimub tunduvalt väiksema tõenäosusega. See annab rakule võimaluse määrata filamendi kasvu suunda, eeldades, et (+)ots on rakus orienteeritud vajalikus suunas.

Aktiiniga seotud valgud

Aktiinifilamendid moodustavad rakus väga erinevaid struktuure. Nad võivad moodustada suhteliselt jäiku ja püsivaid väljasopistusi rakkudest või ka ajutisi dünaamilisi struktuure. Kõikidel juhtudel on aktiinifilamentide põhimõtteline ehitus sama. Erinevused on aga tingitud valkudest, millega aktiinifilamendid on seotud. Enamikul loomsetel rakkudel on aktiinifilamente kõige rohkem plasmamembraani vahetus läheduses, selle all, moodustades seal tiheda võrgustiku. Seda piirkonda tsütoplasmast nimetatakse raku korteksiks (cell cortex) või ka kortikaalseks tsütoplasmaks. See annab rakupinnale teatud mehaanilised omadused, millega on võimalik säilitada või muuta kuju. Kortikaalse tsütoplasma paksus varieerub eri rakutüüpidel. Erütrotsüütides on kortikaalsed aktiinifilamendid seotud rakumembraanile valkude spektriin ja anküriin vahendusel. Nendega sarnaseid valke leidub enamiku selgroogsete loomade rakkude kortikaalses tsütoplasmas. Kortikaalsed aktiinifilamendid võivad omakorda olla organiseeritud väga erineval moel. Nad võivad olla:

  • paralleelsete kimpudena, mis moodustavad raku mikrohattusid ja filopoode. Seal on aktiinifilamendid orienteeritud sama polaarsusega ja paiknevad tihedalt üksteise lähedal, (10–20 nm) kimpudena. Aktiinifilamente seovad kimpudeks valgud fimbriinvilliin ja a-aktiniin.
  • kontraktiilsete struktuuridena, näiteks stressi fiibrites ja aktiini rõngas. Stressi fiibrid on iseloomulikud rakkudele, mis kinnituvad substraadile. Kui rakk tuleb substraadilt lahti (näiteks siis, kui algab mitoos), siis stressi fiibrid kaovad. Aktiini rõngas on ajutine kontraktiilne struktuur, mis moodustub tsütokineesi ajal. Seal on aktiinifilamendid orienteeritud antiparalleelselt ja nendega on seotud mootorvalk müosiin.
  • geelitaolise võrgustikuna, kus aktiinifilamendid on omavahel paljudest kohtadest seotud teatud valkudega. Tuntuim valk, mis tekitab ühendusi üksteisega ristuvate aktiinifilamentide vahele, põhjustades sellega kolmemõõtmelise võrgustiku tekke, on filamiin.

Mikrohatud

Hulkraksete organismide rakkude sõrmekujulised väljakasvud. Moodustise teljeks on membraaniga valkude vahendusel (müosiin I) seotud 20–30 aktiinifilamentidist koosnev kimp. Aktiinifilamente seovad omavahel samuti valgud (fimbriin ja villiin). Filamendid on orienteeritud (+) otsaga hatu tipu suunas. Mikrohatud moodustuvad vedela keskkonnaga piirnevatel rakkudel ja katavad näiteks soole epiteelirakke. Pikkus 0,5–10 µm, diameeter 100 nm. Igal rakul võib esineda tuhandeid hattusid. Funktsiooniks on toitainete transport. Väljakasvud suurendavad oluliselt soole pinda.

Aktiini rõngas

Tsütoplasma jagunemine tsütokineesi käigus toimub kontraktiilse aktiini rõnga abil, mis koosneb peamiselt aktiinifilamentidest. Kontraktiilset rõngast moodustavad aktiinifilamendid kinnituvad plasmamembraanile teatud valkude vahendusel. Kontraktiilne rõngas moodustub anafaasi alguses. Vajalik jõud plasmamembraani sissenöördumiseks tekib aktiini ja müosiini interaktsioonil.

Aktiini polümeriseerumise regulatsioon

Rakkudes esinevad mitmesugused valgud, mis seostuvad aktiiniga ja soodustavad või pärsivad aktiini polümeriseerumist. Arvestades, et Kk (kriitiline kontsentratsioon) G-aktiini jaoks on 0,1 µM, aktiini kontsentratsioon tsütosoolis 0,5 mM, peaks rakkudes tavaliselt esineva soolade kontsentratsiooni juures kogu aktiin olema polümeriseerunud, tegelikkuses on aga ~40% polümeriseerumata. Vaba aktiini kontsentratsioon in vivo on väga kõrge ~50–200 µM. Selle põhjuseks on valk tümosiin (MW 5000, 0,55 mM), mis seostub ATP G-aktiiniga ja takistab monomeeride polümeriseerumist. Et polümeriseerumine muutuks teatud tingimustes võimalikuks, esineb rakkudes täiendav aktiiniga seostuv valk profiliin (15 000 MW), mis on seotud monomeeride (+) otsa külge. Profiliiniga seotud monomeer seostub kergesti aktiinifilamendi (+) otsale ja pärast seostumist profiliini molekul eraldub. Profiliini kontsentratsioon rakkudes võib tõusta näiteks väljast saabuva signaali toimel. Signaal vabastab profiliini seosest rakumembraani fosfolipiididega.

Profiliin (sinine) seostununa aktiiniga (roheline)

Profiliin soodustab polümeriseerumist mitmel viisil:

  • soodustab monomeeride seostumist F-aktiini (+) otsaga, ise seostudes monomeeri ATP sidumiskohast kaugema piirkonnaga, nii et ATP siduv vagumus saab seostuda F-aktiini (+) otsaga;
  • seostub ka membraanis esinevate signaali ülekande ahelate ühenditega nagu fosfolipiid fosfoinositool-4,5-difosfaat (PIP2). Signaali tekkimise korral vabaneb profiliin seosest PIP2-ga ja võib kiirendada aktiini polümeriseerumist;
  • profiliin on aktiiniga seostuvatest valkudest ainuke, mis soodustab aktiiniga seostunud nukleotiidi vahetust, näiteks ADP(adenosiindifosfaat) → ATP(adenosiintrifosfaat).

Tsütosoolis esinevad aktiinifilamentidega seostuvad valgud, mis määravad F-aktiini pikkuse, lagundades teda väiksemateks fragmentideks. Sellised lahutavad valgud jäävad ise seotuks F-aktiini (+) otsaga ja seetõttu monomeeride seostumist ei toimu. Ahel laguneb kiiresti (-) otsast, treadmilling’u kiirus kasvab. Seda tüüpi valkudest on tuntud gelsoliin ja kofiliin. Kofiliin seostub ka monomeeridega, takistades nende polümeriseerumist. Gelsoliin on aktiveeritav kaltsiumi kontsentratsiooni kasvades. Selline aktiinifilamentide lagunemine ei ole oluline mitte ainult rakkude ja tsütoplasma liikumiseks, vaid ka näiteks tsütokineesi jaoks. Kui filamendid on lagunenud väiksemateks juppideks, muutuvad ka tsütosooli omadused, näiteks viskoossus väheneb. Gelsoliinist on tingitud näiteks muutused trombotsüütide struktuuris ja vere hüübimine. Aktiinifilamendid stabiliseeritakse mitmete valkude poolt. Tuntud on CapZ valk, mis seostub (+) otsaga ja takistab uute monomeeride liitumist ja vanade eemaldumist. Tropomoduliin seostub filamentide (-) otstega. Mõlemast otsast blokeeritud filament on stabiilne. Sellised filamendid eksisteerivad stabiilse tsütoskeletiga piirkondades, nagu näiteks lihaste sarkomeeridviburid ja ripsmed ja erütrotsüütide membraan. Vahelduvat polümeriseerumist/depolümeriseerumist nõudvates struktuurides eemaldatakse CapZ valk näiteks PIP2 mõjul, mis vabaneb membraanidest teatud välissignaalide toimel.

Treadmilling

Kui G-aktiini kontsentratsioon langeb teatud kriitilise piirini, nii et polümerisatsioon (+)otsast saab võrdseks monomeeride eraldumisega (-)otsast, siis filamendi netopikkus küll ei muutu, muutub aga iga üksiku monomeeri asend filamendis. Treadmilling võib olla üks mehhanism, mille abil genereeritakse rakus liikumine.

Aktiini polümerisatsiooniastet mõjutavad valgud

  • Aktiini monomeeride polümeriseerumist kontrolli all hoidvad valgud
    • profiliin (seostub monomeeri (+) otsaga ja võimaldab vagumusse seotud ATP vahetust) ja kiirendab polümeriseerumist.
    • tümosiin &beta4 seostub ATP G-aktiiniga ja takistab polümeriseerumist
  • Aktiinifilamente lagundavad valgud (kofiliingelsoliin):
    • lagundavad filamendid lühemateks juppideks, sageli seostuvad (+) otsaga, takistades täiendavat polümeriseerumist ja soodustades lagunemist (–) otsast. Olulised tsütoskeleti kiirete ümberkorralduste ajal.
  • Aktiinifilamentide pikkust stabiliseerivad valgud (CapZtropomoduliin):
    • CapZ seostub (+) otsaga, tropomoduliin (–) otsaga. Need on olulised valgud, kui on vaja säilitada kindla pikkusega filamente, näiteks erütrotsüütide membraanides.

Aktiini polümeriseerumise 3 etappi

  • lag-faasi vältel (polümeriseerumistsentri teke) G-aktiin polümeriseerub lühikesteks ebastabiilseteks oligomeerideks. Kui oligomeerid saavutavad teatud suuruse (3–4 monomeeri), muutuvad nad stabiilseteks tsentriteks järgmisele faasile.
  • kiire monomeeride lisandumine mõlemasse otsa (ahela pikenemine) ja F-aktiini filamentide teke.
  • statsionaarne faas (tasakaal polümeriseerumise ja depolümeriseerumise vahel) – filamentide pikkus on konstantne.

reede, 28. märts 2025

Nukleool

Nukleool (inglise nucleolus) ehk tuumake on ülekaalukalt interfaasi (vahefaasi) rakutuumades leiduv tihke moodustis, mille sees komplekteeritakse rRNA-d. Nukleoole võib tuumas olla üks, kaks või enam.

Nukleool koosneb 5 positiivsest kromosoomipaarist (13, 14, 15, 21 ja 22), mis sisaldavad 200 ribosomaalse RNA (rRNA) geeni koopiat.

neljapäev, 27. märts 2025

RNA ehk ribonukleoiinhape

Ribonukleiinhape ehk RNA (inglise ribonucleic acid; varasem eestikeelne lühend RNH) on bioloogiline makromolekul ehk biopolümeer. RNA osaleb mitmetes eluks vajalikes protsessides, näiteks geenide kodeerimisel ja dekodeerimisel, geenide regulatsioonis ja ekspressioonis. RNA on üheahelaline polünukleotiidide jada, mis on omavahel seotud fosfodiestersidemetega. Rakulised organismid kasutavad geneetilise informatsiooni vahendajana informatsiooni-RNA-d (mRNA ehk messenger-RNA), samas on mõnedel viirustel geneetiline informatsioon kodeeritud RNA kujul.

Mõned RNA molekulidest rakus on katalüütiliselt aktiivsed, mõned vastutavad geeniekspressiooni eest, mõned on rakuliste signaalide vastuvõtjad ning vahendajad. Üks nendest protsessidest on valgusüntees ribosoomis, kus mRNA-d osalevad valgu monomeeride ehk aminohapete kokkuliitmisel polüpeptiidideks. Selleks protsessiks on vajalikud ka transport-RNA-d (tRNA), mis transpordivad aminohappeid ribosoomi, ja ribosoomi-RNA-d (rRNA), mis ühendavad aminohapped omavahel valkudeks.

Võrdlus DNA-ga

RNA keemiline struktuur on väga sarnane DNA omaga, kuid erineb sellest kolmel moel:

  • Erinevalt kaheahelalisest DNA-st on RNA enamasti üheahelaline molekul ning tunduvalt lühem kui DNA molekulid. Sellegipoolest võib RNA komplementaarsuse alusel paarduda ja moodustada kaksikheelikseid, näiteks tRNA puhul.
  • DNA sisaldab suhkrujäägina desoksüriboosi, kuid RNA sisaldab riboosi. Desoksüriboosis puudub tsüklilises pentoosis 2’ positsioonis hüdroksüülgrupp. See hudroksüülgrupp muudab RNA ebastabiilsemaks, kuna hüdrolüüs saab toimuda suurema tõenäosusega.
  • DNA-s on adeniinile komplementaarne alus tümiin, RNA-s aga uratsiil, mis on tümiini metüleerimata vorm.

Nagu ka DNA-s on enamikus bioloogiliselt aktiivsetes RNA-des, näiteks mRNAtRNArRNAsnRNA ja teised mittekodeerivad RNA-d, komplementaarsed järjestused, mis võimaldavad RNA-l voltuda ja moodustada kaksikheeliks. Selliste RNA-de analüüsimine on näitanud, et nad ei ole primaarstruktuuriga. Erinevalt DNA-st ei sisalda paardunud RNA pikki kaksikheelikseid, vaid pigem lühikeste heeliksite kogumeid, mis moodustavad globulaarsete valkudega sarnaseid struktuure. Heeliksite kogumeid moodustades on RNA võimeline omandama ensüümidele omast katalüütilist aktiivsust. Katalüütilise aktiivsusega RNA-d nimetatakse ribosüümiks. Näiteks peptiidsideme sünteesi eest vastutab ribosoomis 23S rRNA, millel on katalüütiline ehk ribosüümne aktiivsus.

Struktuur

Iga nukleotiid RNA-s sisaldab suhkrujäägina riboosi, mille süsinikud nummerdatakse 1’ kuni 5’. 1’ positsioonile on seondunud alus, adeniin (A), tsütosiin (C), guaniin (G) või uratsiil (U). Adeniin ja guaniin on puriinid, tsütosiin ja uratsiil on pürimidiinid. Fosfaatgrupp on seondunud ühe riboosi 3’ ja teise riboosi 5’ süsinikuga. Füsioloogilisel pH-l on fosfaatgrupid negatiivse laenguga ja seega on RNA negatiivse laenguga molekul ehk polüanioon. Lämmastikalused võivad vesiniksidemeid moodustada tsütosiini ja guaniini, adeniini ja uratsiili ning guaniini ja uratsiili vahel.

Struktuuriliselt eristab RNA DNA-st riboosi 2’ süsinikule seondunud hüdroksüülgrupp. RNA biheeliks võtab selle funktsionaalse grupi tõttu A-vormi, DNAl on dominantseks konformatsiooniks ehk ruumiliseks struktuuriks B-vorm. A-vorm tingib RNA kaksikheeliksil väga sügava ja kitsa suure vao ning madala ja laia väikse vao. 2’-OH grupi olemasolu tõttu on konformatsiooniliselt paindlikes RNA regioonides võime keemiliselt atakeerida külgnevaid fosfodiestersidemeid ja lõhestada RNA suhkur-fosfaat selgrooga.

RNA transkribeeritakse ainult nelja lämmastikalusega (adeniin, tsütosiin, guaniin ja uratsiil), kuid aluseid ja seondunud suhkrujääke on võimalik erinevatel viisidel modifitseerida. Pseudouridiin (Ψ) ja ribotümidiin (T) on ühed enamlevinud RNA modifikatsioonid. Pseudouridiin moodustub, kui uratsiili ja riboosi vahel muutub C-N side C-C sidemeks. Veel üks tavaline RNA molekulis leiduv modifikatsioon hüpoksantiin on puriini derivaat ning nukleosiidina kutsutakse inosiiniks (I). Inosiinil on võtmeroll geneetilise koodi Wobble hüpoteesis, mille järgi tRNA antikoodoni 5'alus, mis seondub mRNA koodoni 3'alusega ei ole ruumiliselt nii piiratud ning võivad ebastandardselt aluspaarduda.

Süntees

RNA sünteesi katalüüsib ensüüm, RNA polümeraas, mis kasutab üht DNA-ahelat matriitsina, et sünteesida komplementaarne RNA ahel eehk transkript, seda protsessi nimetatakse transkriptsiooniks. 

Transkriptsiooni initsiatsioon algab ensüümi seondumisega DNA promootori järjestusele. DNA kaksikheeliksi kerib lahti polümeraasi helikaasse aktiivsusega piirkond. RNA polümeraas liigub seejärel mööda matriitsahelat 3’–5’ suunal ja uue RNA molekuli süntees toimub 5’–3’ suunal. DNA järjestuses on kindlaks määratud, millal RNA süntees lõpetatakse ehk termineeritakse.

RNA molekule modifitseeritakse tihti kohe pärast transkriptsiooni. Näiteks eukarüootsele pre-mRNA-le lisatakse polü-A saba ja 5’-cap struktuur ning splaissosoomi abil lõigatakse pre-mRNAst välja intronid, et saaks moodustuda funktsionaalne mRNA.

On olemas ka rida RNA-sõltuvaid RNA polümeraase, mis kasutavad matriitsina RNA-d, et sünteesida uus RNA ahel. Näiteks mitmed RNA viirused kasutavad seda ensüümi oma genoomi replitseerimiseks. Lisaks on RNA-sõltuv RNA polümeraas oluline RNA interferentsi toimimisel.

RNA tüübid

Ülevaade

Informatsiooni-RNA (mRNA) on RNA, mis kannab informatsiooni DNA-lt ribosoomile. mRNA-de kodeerivad järjestused määravad aminohappelise järjestuse sünteesitavas valgus. Paljud RNA-d ei kodeeri valku, umbes 97% transkriptsiooni produktidest eukarüootides.

Mittekodeerivad RNAd võivad olla kodeeritud enda geenide poolt (RNA geenid), kuid võivad olla ka pre-mRNA-st välja lõigatud intronid. Kõige tavalisemad mittekodeerivad RNA-d on transpordi-RNA (tRNA) ja ribosoomi-RNA (rRNA) ning mõlemad on olulised translatsiooni protsessis. On olemas selliseid mittekodeerivaid RNA-sid, mis osalevad geeniregulatsioonis, RNA töötlemises ja teistes protsessides. Mõned RNA-d on võimelised katalüüsima keemilisi reaktsioone nagu näiteks teiste RNA-de lõikamine ja ligeerimine ning peptiidsideme moodustumine ribosoomis – selliseid RNA-sid kutsutakse ribosüümideks.

Translatsioonis

mRNA kannab informatsiooni valgujärjestuse kohta ribosoomi, mis on valgusünteesi masinavärgiks rakus. mRNA on kodeeritud niimoodi, et järjestikused kolm nukleotiidi (koodon) vastavad ühele aminohappele. Kui eukarüootsetes rakkudes on DNA-lt transkribeeritud mRNA eellasmolekul (pre-mRNA), siis protsessitakse see mRNA-ks. Protsessimise käigus lõigatakse välja intronid – pre-mRNA mittekodeerivad alad. Seejärel eksporditakse mRNA tuumast tsütoplasmasse, kus ta seondub ribosoomile ja transleeritakse tRNA abiga vastavaks valguks. Prokarüootses rakus, millel puudub tuum ja tsütoplasmavõrgustik, võib mRNA seonduda ribosoomile ka juba mRNA transkribeerimise ajal.

Transpordi-RNA (tRNA) on väike RNA ahel, mis kannab kindlaid aminohappeid ribosoomi valgusünteesi aktiivtsentrisse, kus aminohapped liidetakse kasvavale polüpeptiidahelale. tRNA-l on piirkonnad aminohapete seondumiseks ja antikoodonregioon koodonite äratundmiseks mRNA ahelal.

Ribosoomi-RNA (rRNA) on ribosoomi katalüütiline komponent. Eukarüootsed ribosomid koosnevad neljast erinevast rRNA molekulist: 18S, 5.8S, 28S and 5S rRNA. Kolm rRNA molekuli sünteesitakse tuumakeses ja üks sünteesitakse mujal. Tsütoplasmas moodustavad ribosomaalsed RNA-d ja valgud nukleoproteiini ehk ribosoomi. Ribosoom seob mRNA-d ja teostab valgusünteesi. Ühele mRNA-le võib korraga seonduda mitu ribosoomi.

Regulatoorsed RNA-d

Mitmed RNA-de tüübid on võimelised geeniekspressiooni maha suruma olles komplementaarsed transleeritavale mRNA-le või geenidele DNA-s. MikroRNA-sid (miRNA; 21-22nt) leidub eukarüootsetes rakkudes. Enam on kirjeldatud neid taimedes ja ussikestes, samuti on inimestel umbes 250 geeni, mis kodeerivad miRNA-sid. miRNAd toimivad läbi RNA interferentsi (RNAi), kus miRNA efektorkompleks ja ensüümid saavad seonduda komplementaarsele RNA-le, blokeerida mRNA transleerimist või kiirendada mRNA degradatsiooni.

Väike interfereeriv RNA (siRNA; 20–25 nt) on lühike kaheahelaline RNA. Neid tekib tihti viraalsete RNAde lagundamisel, samas on ka endogeenseid siRNAde allikaid. siRNA-d käituvad sarnaselt miRNA-dega läbi RNA interferentsi. Mõned miRNA-d ja siRNA-d võivad põhjustada märklaud-geenide metüleerimist, mis lõpetab või vähendab nende geenide transkriptsiooni.

Paljudel prokarüootidel on CRISPR RNA-d, mis moodustavad RNA interferentsiga sarnase süsteemi.

Antisenss-RNA-d on laialt levinud, enamus neist surub maha geene, kuid mõned võivad olla transkriptsiooni aktivaatorid. Antisenss-RNA võib seonduda mRNA-le ning seejärel moodustub kaheahelaline RNA, mille lagundavad ensüümid.

Pikad mittekodeerivad RNA-d reguleerivad eukarüootide geene. Üks neist RNA-dest on Xist, mis katab emaste imetajate ühe X kromosoomi ning see kromosoom inaktiveeritakse.

mRNA võib sisaldada regulatoorseid elemente nagu näiteks ribolüliti, 5’ mittetransleeritav regioon või 3’ mittetransleeritav regioon: need cis-regulatoorsed elemendid reguleerivad vastava mRNA aktiivsust. Mittetransleeritavad regioonid võivad sisaldada ka elemente, mis reguleerivad teisi geene.

RNA töötlemisel osalevad RNA-d

Mitmed RNA-d osalevad teiste RNA-de modifitseerimisel. Pre-mRNA-st lõigatakse splaissosoomidega välja intronid, mis sisaldavad erinevaid väikeseid tuuma RNA-sid (snRNA). Mõned intronid võivad olla ribosüümid. RNA-d saab modifitseerida ka nukleotiidide modifitseerimisega. Eukarüootides modifitseeritakse RNA nukleotiide üldjuhul väikeste tuumakese RNA-de abil (snoRNA; 60–300 nt), mida leidub tuumakeses ja Cajali kehakestes. snoRNA-d assotsieeruvad ensüümidega, mis juhitakse aluspaardumise abil RNA piirkonda, mida modifitseerima hakatakse. Seejärel modifitseerivad need ensüümid RNA nukleotiide. RNA võib olla ka metüleeritud.

RNA genoomid

Nagu DNA, kannab ka RNA geneetilist informatsiooni. RNA viiruste genoomid koosnevad RNA-st, mis kodeerib ka erinevaid viiruse valke. Viroidid on grupp patogeene, mis koosnevad ainult RNA-st, ei kodeeri valke ja replitseeritakse peremeestaime raku polümeraasiga.

RNA ümberpööratud transkriptsioonis

Viirused, mis kasutavad ümberpööratud transkriptsiooni replitseerivad oma DNA genoome kasutades matriitsahelana RNA-d. Seejärel transkribeeritakse DNA koopiatelt uued RNA-d. Retrotransposoonid levivad samuti kopeerides DNA-d ja RNA-d üksteise pealt.

Telomeraas sisaldab RNA-d, mida kasutatakse matriitsina eukarüootsete kromosoomide otste sünteesimiseks.

Kaheahelaline RNA

Kaheahelaline RNA (dsRNA) on RNA, millel on sarnaselt DNA-ga kaks komplementaarset ahelat. Mõnede viiruste geneetilise materjali moodustab dsRNA (dsRNA viirused). dsRNA-d (viraalne RNA või siRNA) võivad põhjustada eukarüootsetes rakkudes RNA interferentsi

kolmapäev, 26. märts 2025

Ribosoomaalne-RNA (rRNA)

Ribosomaalne RNA ehk rRNA on ribonukleiinhape, millel on mõningaid ensümaatilisi omadusi ja mis koos proteiinidega moodustab valgusünteesi läbiviivaid ribosoome. rRNA ehk ribosome RNA moodustab ribosoomide põhilise osa (ca 60% kaalust). Mõlemas ribosoomi alaühikus on pikad rRNA ahelad, mis moodustavadki seondumissaite vastavatele ribosomaalsetele proteiinidele. Need valgud aitavad ribosoomil säilitada ja kohandada vastavat kolmemõõtmelist struktuuri. rRNA on valgusünteesi toimumise keskkohaks – seega rRNA on valgusünteesiks hädavajalik kõigis organismides. rRNA on nii struktuuriliselt kui ka funktsionaalses mõttes ribosoomi tähtsaim komponent. Ribosoomid sisaldavad kahte põhilist rRNAd ja rohkem kui 50 valku. Ribosoomide suure alaühiku rRNA käitub kui ribosüüm – katalüüsides peptiidsideme teket. rRNA järjestusi kasutatakse laialdaselt erinevate organismide evolutsiooniliste suhete väljaselgitamisel, sest need leiduvad kõikides teadaolevates eluvormides.

E. coli 70S ribosoomi struktuur. 50S alaühik on punane ja 30S alaühik sinine. Ribosomaalsed valgud on tähistatud roosa ja helesinise värviga

Ribosoomi komponendid

Ribosoom on globulaarse struktuuriga üksus, mille keskne komponent on rRNA. rRNA koosneb peamiselt paardunud osadest (heeliksitest), mis on seotud paardumata osadega, rRNA täidab ribosoomi põhilisi funktsioone. rRNA moodustab struktuurseid domeene, mis on ribosomaalsete valkudega seotud jäikadeks üksusteks. Ribosomaalsete valkude põhiline ülesanne on rRNAga seondumine ja nende struktuuri stabiliseerimine. Lisaks sellele täidavad mõned valgud ka spetsiifilisi ülesandeid – näiteks mRNA sidumine, peptiidi väljutamine, (ko)faktorite sidumine. Ribosomaalsed RNA-d moodustavad koos ribosomaalsete valkudega (r-valkudega) kaks alaühikut: väike alaühik ja suur alaühik. Väikese alaühiku domeenid võivad üksteise suhtes mõneti liikuda, suurem alaühik on monoliitselt jäiga struktuuriga. Translatsiooni käigus liituvad ribosoomi kaks alaühikut ja mRNA (mis määrab sünteesitava valgu aminohapete järjestuse) ja erinevad tRNAd, mis toovad kohale sünteesiks vajalikke aminohappeid. Nii prokarüootsed kui ka eukarüootsed ribosoomid koosnevad kahest alaühikust. Järgnevalt ribosoomide võrdlustabel E. Coli ja inimese näitel (S tähistab Svedbergi ühikut, nt = vastava rRNA pikkus nukleotiidides):

TüüpSuurusSuur alaühik (rRNAs)Väike alaühik (rRNA)
prokarüootne70S50S (5S : 120 nt, 23S : 2906 nt)30S (16S : 1542 nt)
eukarüootne80S60S (5S : 121 nt, 5.8S : 156 nt, 28S : 5070 nt)40S (18S : 1869 nt[6])

Prokarüoot

Bakteritel ehk prokarüootidel on väga palju ribosoome – 7000–70 000 ribosoomi raku kohta. 1 sekundi jooksul tekib rakus 5–10 uut ribosoomi. Tsütoplasma massist võivad ribosoomid moodustada 30% ja enamgi. Raku kuivainest 20% võib moodustada rRNA.

Prokarüootidel sisaldab väike 30S alaühik 16S rRNAd. 16S rRNA koosneb neljast domeenist. Suurem, 50S alaühik sisaldab kahte rRNAd – 5S rRNA ja 23S rRNA. 23S rRNA sisaldab kuut domeeni ning 5S rRNA-d võib lugeda suure alaühiku seitsmendaks domeeniks. Bakteriaalsed 16S, 23S ja 5S rRNA geenid on tüüpiliselt organiseeritud ühe operoni seisusesse. Nii tagatakse see, et kõiki ribosoomi rRNA komponente sünteesitakse täpselt sama palju. Selliseid operone võib olla ühes genoomis mitu koopiat (näiteks soolekepikesel on neid 7). 16S rRNA 3' ots seondub mRNA 5' otsas oleva Shine-Dalgarno järjestusega (ribosoomi sidumissait ehk RBS), sidudes omavahel ribosoomi (alaühikud), ja mRNA, käivitades valgusünteesi. Eeltuumsetes moodustab ligikaudu 70% ribosoomi massist rRNA.

Eukarüoot

Eukarüootide genoomis on üldiselt mitu koopiat rRNA geene organiseeritud tandemkordustesse, näiteks inimestel – 300–400 kordust asuvad viies klastris (kromosoomides 13141521 ja 22). Kokkuvõtvalt kutsutakse rDNA geeniklastreid ribosomaalseks DNA-ks nende erilise struktuuri ja transkriptsioonilise käitumise tõttu. rRNA osakaal päristuumsete ribosoomides on umbes 60%. 18S rRNA on enamikus päristuumsetes väikese alaühiku komponent. Suur alaühik sisaldab kolme rRNA osakest – 5S, 5.8S ja kolmas, varieeruv rRNA (näiteks 28S imetajates, 25S taimedes). 28S, 5.8S ja 18S rRNAsid kodeerib üks transkript (45S). 45S rDNA on organiseeritud viide klastrisse kromosoomides 13, 14, 15, 21 ja 22, iga klastrit on 30–40 kordust. Neid klastreid transkripteerib RNA polümeraas I – ehk viib läbi rRNA sünteesi tuumakeses. Tuumake on osa rakutuumast, mis on spetsialiseerunud rRNA sünteesile ja rRNA assambleerimisele ribosoomidesse. Võib öelda, et tuumake on organell, mis moodustub tänu ribosoomide formeerumise protsessile. Tuumake moodustub ribosomaalse RNA (rRNA) geene sisaldavate kromosoomilõikude ümber (kromosoomides 13, 14, 15, 21 ja 22). 5S rRNA esineb tandemkordustena, suurim neist asub kromosoomis 1, asukohas q41–42. 5S rRNAd transkripteerib RNA polümeraas III (asub rakutuumas). Lisaks tsütoplasmas asuvatele ribosoomidele on päristuumsetel ribosoomid ka mitokondrites. Mitokondriaalsed rRNAd imetajates on 12S (väike alaühik) ja 16S (suur alaühik).

rRNAde protsessimine ja lagundamine

Next.svg rRNA eellasmolekulid on tunduvalt pikemad kui nende protsessinguproduktid ribosoomides. Rnaas E ja Rnaas III on olulised rRNA töötlemisel. Näiteks osaleb Rnaas E prokarüootide 16S rRNA protsessimisel. Lisaks metüleeritakse rRNA molekule paljudest kohtadest, et kaitsta neid näiteks ribonukleaaside poolse degradatsiooni eest. rRNAd, mis ei moodusta aktiivseid ribosoome – modifitseerimise või protsessimise defektsed produktid – lagundatakse. rRNA-de lagundamisega tegeleb ensüüm Rnaas R.

Translatsioon

Next.svg Translatsioon ehk valgusüntees on protsess ribosoomides, mille käigus sünteesitakse mRNA põhjal aminohapetest polüpeptiidahel. Spetsiifilised järjestused erinevates rRNAdes on hädavajalikud nii translatsiooni läbiviimiseks kui ka valgusünteesiaparaadi (ribosoomi) korrektse tertsiaarstruktuuri tagamiseks.

rRNA tähtsus meditsiinis ja evolutsiooni uurimisel

Tänu ribosomaalse RNA spetsiifilistele omadustele on sel tähtis koht kahes valdkonnas:

  • rRNA on märklaud paljudele erinevatele kliiniliselt tähtsatele antibiootikumideleklooramphenikool (toimekoht 23S rRNAs), erütromütsiin (toimekoht nii 23S rRNAs kui ka suurema alaühiku valkudes), kasugamütsiin, paromomütsiinritsiinspektinomütsiin (toimekoht ribosoomi väiksem alaühik), streptomütsiin ja tiostreptoon (toimekoht ribosoomi suurem alaühik).
  • rRNA on üks väheseid geeniprodukte, mis on olemas (iga organismi) kõigis rakkudes. Erinevate organismide rDNA järjestuste – mis kodeerivad rRNA-d – võrdlemisel on võimalik määrata nende taksoneid ja põlvnemiskäiku. Näiteks on võimalik määrata, mitu miljonit aastat tagasi elas kahe organismi ühine eellane ehk kui kaugel asuvad nad teineteisest evolutsiooniliselt. Tänapäevane bakterite fülogeneetiline süsteem on koostatud just nimelt rRNA geenide (16S täpsemalt) järjestuste sarnasuste ja erinevuste alusel. Põhjuseks rRNA geenide äärmine konserveeritus: rRNA geenid on head evolutsioonilised markerid, sest nende järjestus on evolutsiooni käigus vähesel määral muutunud. Nimelt, ribosoomi võib pidada organismi üheks tähtsaimaks organelliks – kui rRNA geenides toimub mutatsioon, siis tihti isend hukkub ning seeläbi elimineeritakse populatsioonist mutatsioonid. 16S rRNA ja 18S rRNA järjestuste põhjal on määratud elusorganismid kolme suurde fülogeneetilisse rühma (eukarüoodid, arhed ja bakterid). Praeguseks on teada mitmeid tuhandeid rRNA järjestusi, mis on kättesaadavad paljudes andmebaasides, näiteks RDP-II ja SILVA. 16S rRNA geenide kaudu on kindlaks määratud ka inimese mikrofloora ja võrreldud seda teiste imetajate omadega. Lisaks tõestab rRNA endosümbioositeooriat – nimelt, rRNA eukarüootsete rakkude kloroplastides ja mitokondrites olevates ribosoomides on väga sarnane eeltuumsete ribosoomides olevate rRNA osakestega.

teisipäev, 25. märts 2025

Pärilik muutlikkus

Pärilik muutlikkus

  

Organismi pärilik info paikneb kromosoomides asuvates geenides. Üht liiki organismide igas keharakus on enamasti sama arv kromosoome – see on liigiomane tunnus. Vaid sugurakkudes on kromosoomide arv poole väiksem. Nii on näiteks inimese keharakkudes 46 ja sugurakkudes 23 kromosoomi.
     Sugulisel paljunemisel saab uus organism alguse viljastunud munarakust ja seetõttu pärinevad tema pooled kromosoomid seemne- ja pooled munarakust. Selle tulemusena ühendab järglane mõlema vanemorganismi tunnuseid.
     Keharakkude kromosoomid jagunevad paaridesse. Paarilised kromosoomid sisaldavad samu tunnuseid määravaid geene. Seejuures saab aga olla igal geenil mitu erinevat vormi. Nii võib juhtuda, et paarilistesse kromosoomidesse on sugulisel paljunemisel sattunud ühelt vanemalt üks geenivorm ja teiselt vanemalt teistsugune. Sel juhul avaldub enamasti vaid ühe geenivormi poolt määratud tunnus ja teise paarilise poolt määratav tunnus ei ilmne. Avalduvat geeni nimetatakse dominantseks ja tema mitteavalduvat paarilist – retsessiivseks.
     Joonistel on kujutatud paarilisi kromosoome, kus T tähistab dominantset ja t retsessiivset geeni. Retsessiivne geen saab avalduda vaid juhul, kui ta esineb samaaegselt mõlemas kromosoomis (parempoolsel joonisel).

 

      Avaldub geeni T poolt 
määratav tunnus

  Avaldub geeni T poolt 
määratav tunnus

  Avaldub geeni t poolt 
määratav tunnus

 

Geenides paiknevat infot muutvaid tegureid nimetatakse mutageenideks. Nendeks on näiteks paljud keemilised ained ning röntgen- ja ultraviolettkiirgus. Kui mutatsioonid toimuvad sugurakkude kromosoomides, siis päranduvad need järglastele edasi. Nii tekib pärilik muutlikkus, mille tulemusena järglane võib omandada mõne uue tunnuse, mis vanematel ei esine. Mutageenid võivad muuta ka keharakkude geene, kuid sugulisel paljunemisel need mutatsioonid järglastele edasi ei kandu. See on mittepärilik muutlikkus.

esmaspäev, 24. märts 2025

Kromosoomid

Kromosoomid (kreeka keeles chroma - värvus, soma - keha) on eukarüootsetes rakkudes mitoosi ja meioosi ajal valgusmikroskoobis nähtavad valkudega kondenseerunud DNA-molekulid (nukleoproteiinsed kepjad kehakesed). Ka bakterite ja viiruste genoomset DNAd nimetatakse sageli kromosoomiks.

Inimese (naise) kromosoomid

Kromosoomid asuvad rakutuumas ning nende arv on liigispetsiifiline. Näiteks inimese somaatilistes ehk keharakkudes on 46 kromosoomi. Kromosoom koosneb ühest pikast DNA molekulist ja sellega seondunud valkudest. Geenid ja mittegeensed DNA-järjestused paiknevad kromosoomis lineaarselt ja kindlas järjekorras. Kromosoom sisaldab DNAga massivõrdses koguses histoone (aluselised valgud), varieeruvas hulgas mittehistoonseid (happelisi) valke ja väheses koguses RNAd. Kromosoomide DNA, valkude ja RNA kompleksi nimetatakse kromatiiniks.

Raku jagunemisel (mitoosis ja meioosis) kromosoomid kondenseeruvad ehk pakitakse valkude abil tihedalt kokku. See on vajalik selleks, et DNA jaguneks kahe moodustuva tütarraku vahel võrdselt. Mitoosi ja meioosi pro- ja metafaasis koosneb kromosoom kahest identsest kromatiidist (tütarkromatiidid), mis on ühendatud tsentromeeriga. Tsentromeerile kinnituvad kääviniidid, millega kumbki tütarkromatiid tõmmatakse anafaasis raku vastaspoolustele.

Tsentromeer jagab kromosoomi tavaliselt kaheks osaks, kuid mõnes kromosoomis esineb sekundaarsoonis, mis eraldab väikese (keraja) tipuosa, nn. satelliidi. Meioosi ja mitoosi profaasi kromosoomidel esinevad heterokromatiinsed paksendid (tihedamini kokkupakitud DNA-alad) ehk kromomeerid.

Kromosoomide erivormid on lambihari- ja hiidkromosoomid.

Kromosoomi otstes paiknevad DNA kordusjärjestused, mida nimetatakse telomeerideks. Telomeerid kaitsevad kromosoomis olevat DNAd lagundamise eest, takistavad DNA otsade ühinemist ja soodustavad täpset DNA replikatsiooni ilma DNA kadudeta

reede, 21. märts 2025

DNA polümeraasid

DNA polümeraasid on molekulaarbioloogias ensüümid, mis sünteesivad desoksüribonukleotiididest DNA molekule. Need ensüümid on DNA replikatsiooniks hädavajalikud ja töötavad tavaliselt paaris, et moodustada ühest esialgsest DNA molekulist kaks identset DNA ahelat. Selle protsessi käigus loeb DNA polümeraas olemasolevaid DNA ahelaid, et moodustada kaks uut ahelat, mis sobituvad esialgsega. DNA polümeraas liidab nukleotiide DNA 3’ otsa ühe nukleotiidi kaupa.

DNA polümeraas

Iga kord, kui rakk jaguneb, aitab DNA polümeraas raku DNA-d duplitseerida, et esialgse DNA molekuli koopia kanduks edasi tütarrakule. Sel viisil saab geneetilist infot põlvest põlve edasi anda. Enne kui replikatsioon saab toimuda, harutab ensüüm nimega helikaas DNA molekuli biheeliksi lahti, lõhkudes lämmastikaluste vahel olevad vesiniksidemed. Selle protsessi käigus hargneb DNA kaheks üksikahelaks, mida saab replikatsioonil kasutada matriitsahelana.

Funktsioon

DNA polümeraasi peamiseks funktsiooniks on sünteesida desoksüribonukleotiididest DNA. Sünteesitavasse DNA ahelasse lülituvad nukleotiidid, mille lämmastikalused on komplementaarsed matriitsahela nukleotiidide lämmastikalustega. Paardumine toimub alati kindla korra järgi, kus tsütosiin paardub guaniiniga ja tümiin adeniiniga.

Uue DNA molekuli sünteesimisel lisab DNA polümeraas vabu nukleotiide ainult valmiva ahela 3’ otsa. Selle tulemusena pikeneb uus ahel 5’-3’ suunal. DNA polümeraas ei suuda ise uut ahelat de novo sünteesida, ta suudab lisada nukleotiide ainult olemasoleva 3'-OH grupi külge ning seega vajab töö alustamiseks praimerit, millele saab lisada esimese nukleotiidi. DNA replikatsioonil on kaks esimest alust alati RNA alused ja need sünteesib ensüüm primaas. Helikaasi ja topoisomeraas II on vaja DNA lahtikeeramiseks üheahelaliseks DNA-ks hõlbustamaks semikonservatiivset DNA replikatsiooni.

DNA polümeraas liigub moodustuval ahelal vastupidi matriitsahelal liikumise suunaga. Juhtival ahelal liigub DNA polümeraas 3’-5’ suunal ja mahajääv ahel moodustatakse 5’-3’ suunal. See erinevus võimaldab saada kaheahelalise DNA molekuli, mille kaks ahelat on omavahel antiparalleelsed.

DNA polümeraas teeb umbes ühe vea iga miljardi aluspaari kohta. Osad DNA polümeraasid suudavad neid vigu parandada, kuid mitte kõik. Selle protsessi käigus parandatakse viga juurdesünteesitud DNA ahelas. Vale aluspaari äratundmise puhul liigub DNA polümeraas ühe aluspaari võrra DNA-l tagasi. Ensüümi 3’-5’ eksonukleaasne aktiivsus lubab vale aluspaari välja lõigata – seda tuntakse ka proofreading'u nime all. Pärast seda sisestab polümeraas õige aluspaari ja replikatsioon jätkub. Sellega tagatakse, et info esialgselt DNA ahelalt jõuab samal kujul tütarrakkudesse.

DNA replikatsioonis on täpsus väga oluline. Lämmastikaluste valepaardumised võivad aluse anda mittefunktsionaalsetele valkudele, mis omakorda võivad viia vähi tekkeni. Mitmed DNA polümeraasid omavad eksonukleaaset domääni, mis tuvastab valestipaardumised ning asendab vale nukleotiidi õigega.

Struktuur

Teadaolevatel DNA polümeraasidel on kõrgelt konserveerunud struktuur, mis tähendab, et nende katalüüsivad subühikud varieeruvad liikide vahel väga vähe. Konserveerunud struktuurid viitavad tavaliselt tähtsatele ja asendamatutele rakufunktsioonidele, mis tagavad evolutsioonilised eelised. Polümeraasi kuju sarnaneb parema käega, koosnedes pöidla, sõrme ja peopesa domeenidest. Peopesa domeen on aktiivtsenter, mille funktsiooniks on katalüüsida fosfaatrühma ülekannet. DNA on seotud peopesa domeeniga, kui ensüüm on aktiivne. Seda reaktsiooni katalüüsivad kahevalentsed metalliioonid. Sõrme domeeni funktsiooniks on siduda nukleosiidtrifosfaadid esialgse lämmastikaluse külge. Pöidla domeen mängib rolli protsessiivsusel, translokatsioonil ja DNA positsioneerimises.

Liikidevaheline varieeruvus

Arvestades järjestuste homoloogiat, saab DNA polümeraasid jaotada seitsmesse perekonda: A, B, C, D, X, Y ja RT.

Osad viirused kodeerivad DNA polümeraase, nagu B-hepatiidi viiruse DNA polümeraas. See võib valikuliselt erinevate mehhanismidega replitseerida viiruse DNA-d. Retroviirused kodeerivad ebatavalist DNA polümeraasi, mida nimetatakse pöördtranskriptaasiks. See on RNA-st sõltuv DNA polümeraas (RdDp) ning polümeriseerib RNA ahelalt DNA.

PerekondDNA polümeraasi tüüpEsinemineNäide
AReplikatiivsed ja reparatsioonipolümeraasidEukarüootides ja prokarüootidesPol I
BReplikatiivsed ja reparatsioonipolümeraasidEukarüootides ja prokarüootidesPol II
CReplikatiivsed polümeraasidProkarüootidesPol III
DReplikatiivsed polümeraasidEubakteritesPole piisavalt hästi kirjeldatud
XReplikatiivsed ja reparatsioonipolümeraasidEukarüootidesPol β
YReplikatiivsed ja reparatsioonipolümeraasidEukarüootides ja prokarüootidesPol IV, Pol V
RTReplikatiivsed ja reparatsioonipolümeraasidViirustes, retroviirustes ja eukarüootidesTelomeraas, B-hepatiidi viirus

Polümeraasid prokarüootides

Prokarüootidel on ainul üks RNA polümeraas, mis eksisteerib kahe vormina: polümeraasi südamik ja holoensüüm. Südamik sünteesib DNA matriitsilt uue ahela, kuid ei ole ise võimeline sünteesi initsieerima. Viimast teevad just holoensüümid.

Pol I

Prokarüootide A polümeraaside hulka kuulub DNA polümeraas I (Pol I) ensüüm, mida kodeerib polA geen ja mis on prokarüootide seas üldlevinud. See parandusomadustega polümeraas osaleb parandamisel nii 3’-5’ kui ka 5’-3’ suunal eksonukleasse aktiivsusega ja Okazaki fragmentide protsessimisel maha jääva ahela sünteesil. Pol I on kõige kõrgema aktiivsusega, võttes näiteks bakteris E. coli enda alla > 95% polümerassest aktiivsusest. Rakud, millel puudub Pol I, suudavad Pol I aktiivsuse asendada mõne teisega nelja polümeraasi seast. Pol I lisab umbes 15–20 nukleotiidi sekundis, mis näitab üsna madalat protsessiivust. Pol I alustab nukleotiidide lisamist seega RNA praimerist – replikatsiooni alguspunktist, mida nimetatakse ori piirkonnaks. Sellest umbes 400 aluspaari eespool assembleeritakse holoensüüm Pol III, mis võtab replikatsiooni suure protsessiva kiirusega üle.

Pol II

DNA polümeraas II on B polümeraas, mida kodeerib geen polB, mida tuntakse ka DinA nime all. Pol II on ensüüm, millel on 3’-5’ eksonukleaasne aktiivsus ja mis osaleb DNA reparatsioonis. Arvatakse, et Pol II toetab Pol III, interakteerudes holoensüümi valkudega ja võtab suure osa protsessiivsusest enda peale. Pol II peamiseks funktsiooniks on võime suunata polümeraasi aktiivsust replikatsioonikahvlis ja aidata seiskunud Pol III üle valestipaardumistest.

Pol III

DNA polümeraas III holoensüüm on peamine ensüüm, mis osaleb E. coli-s DNA replikatsioonil ja kuulub C polümeraaside alla. See koosneb kolmest osast: Pol III südamik, beeta libisemisklamber ja klambri laadimise kompleks. Südamik koosneb kolmest osast: alfa – polümeraasse aktiivsusega südamik, epsilon – eksonukleaasne proofreader ja delta, mis võib käituda epsiloni jaoks stabilisaatorina. Holoensüüm koosneb kahest südamikust – üks juhtiva ja teine mahajääva ahela jaoks.

Pol IV

DNA polümeraas IV teeb E. coli's palju vigu ja on seotud mittespetsiifilise mutageneesiga. Pol IV kuulub Y polümeraaside alla, mida ekspresseerib dinB geen. See lülitakse sisse SOS-induktsioonis, mida põhjustab replikatsioonikahvlis seisma jäänud polümeraas. Selle protsessi käigus suureneb polümeraas IV tootmine kümme korda. Lisaks on üheks funktsiooniks segada Pol III ensüümi protsessiivsust. See loob kontrollpunkti, peatades replikatsiooni ja võimaldades parandada DNA kahjustused. Rakkudel, millel puudub dinB geen, esineb DNA-d kahjustavate ainete tõttu rohkem mutatsioone.

Pol V

DNA polümeraas V on Y-perekonna DNA polümeraas, mis osaleb SOS vastuses ja kahjustatud DNA parandamises. Pol V transkribeeritakse umuDC geenidelt ning ensüümi sünteesitakse ainult siis, kui kahjustatud DNA kutsub rakus esile SOS vastuse.

neljapäev, 20. märts 2025

Testid

Tere. 
Seekord panen ma siia ühe poliitilise kompassi testi. Ning see ei ole selline nagu need eelmised. Seda pole ma varem jaganud. Test ise asub siin.
Lisan juurde veel Kinsley skaala testi. See on heteroseksuaalsuse-homoseksuaalsuse-(aseksuaalsuse-polüseksuaalsuse) test. Test ise asub siin.
Carl Gustav Jungi isiksusetest. Test ise asub siin.
Bri-teooria isiksusetest. Test ise asub siin.
Soo koordinaatide test. Test ise asub siin.
Seksuaalse orientatsiooni test. Test ise asub siin.
Vabandan kui mõned testid korduvad.

kolmapäev, 19. märts 2025

Väike interfereeriv ehk sekkuv RNA (siRNA)

Väike interfereeriv ehk sekkuv RNA (siRNA), mida tuntakse ka nimetustega lühike interfereeruv RNA ja vaigistav RNA, on kaheahelaline RNA molekul, mille pikkuseks on 20–25 aluspaari. siRNA-l on mitmeid rolle, kuid peamiselt osaleb ta RNA interferentsi (RNAi) rajas, kus ta sekkub kindla nukleotiidse järjestusega geenide ekspressiooni. siRNA põhjustab mRNA lagundamise pärast transkriptsiooni, mille tulemusel ei toimu translatsiooni. Lisaks on siRNA kasutuses RNA interferentsiga seotud radades, näiteks käitub siRNA viirusevastastes mehhanismides või genoomis kromatiini struktuuri kujundades. Alles praegu on alustatud eelmainitud radade uurimist.

RNA interferents looma rakus

siRNA-de roll post-transkriptsioonilisel geenivaigistamisel taimedes avastati esmalt David Baulcombesi uurimisgrupis Sainsbury laboris Norwichis Inglismaal ning avaldati esmakordselt ajakirjas Science aastal 1999. Peatselt teatas Thomas Tuschl koos kolleegidega ajakirjas Nature, et sünteetilist siRNA-d saab kasutada ka imetajate rakkudes RNA interferentsi rajal. Selle avastuse tulemusena suurenes huvi kasutada siRNA-d ravimite arendamises ja biomeditsiinilistes uuringutes.

Struktuur

siRNA-del on hästi defineeritud struktuur: see on lühike (enamasti 20–24 aluspaari), kaheahelaline RNA (dsRNA), millel on 5’ ots fosforüleeritud ning 3’ ots hüdroksüleeritud kahe üleliigse nukleotiidiga. siRNA-d toodetakse pikast kaheahelalisest RNA-st ja väikesest juuksenõela RNA-st ja seda protsessi katalüüsib Diceri ensüüm. siRNA-d saab rakkudesse ka transfekteerida. Teoreetiliselt on võimalik vaigistada kõiki geene sünteetilise siRNA-ga, millel on komplementaarne järjestus. Seetõttu on siRNA-d olulised geeni funktsionaalsuse määramisel ja ravimi spetsiifilisusel transkriptsiooni järgsel ajal.

RNAi induktsioon kasutades siRNA-sid või nende biosünteetilisi prekursoreid

Diceri ensüüm

Geenide vaigistamine kasutades genoomivälist siRNA-d, mis on viidud rakkudesse transfekteerides, ei ole väga efektiivne, sest siRNA pakutud efekt on lühiaegne, eriti kui tegemist on kiiresti jagunevate rakkudega. Seda saab vältida, kui luua siRNA jaoks ekspressiooni vektor. siRNA järjestust muudetakse nii, et luuakse kaheahelaline rõngas. Tulemuseks on lühike juuksenõela RNA (shRNA), mida Dicer ensüüm on võimeline töötlema uuesti funktsionaalseks siRNA-ks. Tavaliselt kasutatakse RNA polümeraas III promootorit (näiteks U6, mis on seotud geeni splaissimisega või H1, mis on Rnaasi komponent) transkriptsiooni kassetis, mis on mõeldud väikeste tuuma RNA-de (snRNA) transkriptsioonideks. Arvatakse, et snRNA-dest on samuti Diceri ensüüm võimeline tootma funktsionaalseid siRNA-sid.

Geeni vaigistamise efektiivsust saab suurendada ka Cell Squeeze'i (raku pigistamise) tehnikaga, mis on vektorivaba platvorm rakusiseseks transpordiks. Selle käigus muudetakse rakkude kuju mehaaniliselt, viies neid läbi takistuse, mille diameeter on väiksem kui raku diameeter. Mehaanilise töötluse tulemusel tekivad kanalid, mille kaudu on siRNA-l võimalik rakku siseneda.

siRNA aktiivsus RNAi rajas sõltub suuresti sellest, kuidas on võimeline seonduma RNA-indutseeritud geenivaigistamiskompleks (RISC). Kui siRNA on seondunud RISC-ga, toimub siRNA lahti keerdumine ja senss- ehk kodeeriva ahela hävitamine endonukleaasidega. Allesjäänud antisess- ehk matriitsahela – RISC kompleks seondub sihtmärk mRNA-ga ning algab transkriptsiooniline vaigistamine.

RNA aktivatsioon

Hiljuti avastati, et kaheahealine RNA võib lisaks geeni vaigistamisele ka geene aktiveerida. Seda mehhanismi kutsutakse "väikeseks RNA-indutseeritud geeni aktiveerimiseks" ehk RNAa-ks. On näidatud, et dsRNA sihtmärk geeni promootorid indutseerivad tugevat transkriptsiooni aktiveerimisega seotud geenidel. RNAa töötamist on näidatud inimese rakkudes, kasutades sünteetilist dsRNA-d ning seda nimetati "väikeseks aktiveerivaks RNA-ks (saRNA). Veel ei ole teada, kas RNAa toimib ka teistes organismides.

Väljakutse: ebaspetsiifiliste efektide vältimine

Kuna RNAi sekkub ka mitmetesse teistesse signaali radadesse, võib juhtuda, et siRNA võib vahel põhjustada ebaspetsiifilisi efekte. Imetaja rakk võib kaheahelalist RNA-d, nagu on siRNA, pidada viiruse kõrvalproduktiks ning lasta immuunsüsteemil see hävitada. Veel enam, kuna mikroRNA sarnaneb struktuurilt siRNA-ga ning mikroRNA reguleerib geeni ekspressiooni suuresti tänu ebatäielikule komplementaarsusele aluspaaride vahel sihtmärk mRNA-ga, siis võib siRNA rakku viimine põhjustada vale geeni vaigistamise.

Kaasasündinud immuunsus

Kui viia korraga liiga palju siRNA-d rakkudesse, võib juhtuda, et aktiveerub kaasasündinud immuunsus ning juhtub mitmeid ebaspetsiifilisi sündmusi. Viimaste uurimuste järgi arvatakse, et selle põhjuseks on kaheahelalise RNA sensor PKR, kuid põhjuseks võib olla ka retinoidhappega indutseeritav geen I (RIG-I). Protsessis on kirjeldatud ka tsütokiini aktiveerimist Toll-sarnase retseptor seitsme (TLR7) vahendusel. Üheks lahenduseks ebaspetsiifiliste efektide vähendamiseks on muuta siRNA mikroRNA-ks. MikroRNA-sid leidub organismis loomulikult ning kasutades nende endogeenseid radu, peaks olema võimalik saavutada samasugune geeni vaigistamise efekt oluliselt madalama kontsentratsiooni juures võrreldes siRNA-ga. Kasutades mikroRNA-d peaks vähenema ebaspetsiifiliste efektide arv.

Möödasihtimine

siRNA kasutamisel geeni vaigistamiseks on mureks mööda sihtimine. Sellisel juhul geenid, mis ei ole täielikult komplementaarsed, võidakse kogemata vaigistada siRNA abil (sest siRNA käitub kui miRNA) ning see võib viia andmete valele tõlgendamisele ja potentsiaalsele toksilisusele. Seda probleemi saab osaliselt vähendada, korraldades sobilikke kontrolleksperimente ning samuti arendatakse jõudsalt siRNA algoritme, mis oleksid vabad mööda sihtimisest. Kasutades kogu genoomi ekspressiooni uuringuid, näiteks mikrokiipide abil, on võimalik kontrollida uute siRNA-de töötamist ning arendada algoritme veelgi. 2006. aastal avaldatud uurimus Dr. Khvorova laborist näitas, et siRNA-des 6–7 aluspaari pikkused jupid alates teisest positsioonist kattuvad valesti vaigistatud geenide 3’UTR regioonidega.

Terapeutiline rakendamine

Teoorias on võimalik vaigistada igat geeni RNAi raja kaudu, kasutades siRNA-sid. Seetõttu on siRNA-de vastu suur huvi nii elementaar- kui ka rakendusbioloogias. Järjest enam jälgitakse suuremõõtmelisi RNAi radu, et teha kindlaks, millised on olulised geenid erinevates bioloogilistes protsessides. Eeldatakse, et kuna haigused sõltuvad tihti mitmest geenist, siis ühe geeni vaigistamist siRNA-ga võiks kasutada teraapiana.

Samas, kui rakendada RNAi siRNA-de vahendusel elavates organismides, eriti inimestes, tekivad mitmed takistused. Katsed on näidanud, et siRNA efektiivsus sõltub raku tüübist, kuid põhjust veel ei mõisteta. Mõned rakutüübid vastavad siRNA-le hästi ning toimub geeni vaigistamine, samas teistes rakutüüpides puudub geeni vaigistamine täielikult (kuigi on toimunud tõhus transfektsioon).

I faasi tulemused aastal 2005 kahele esimesele RNAi katsetele (mis olid vananemisega seotud kollatähni degeneratsiooni ehk AMD vastu) näitasid, et siRNA-d on hea kasutada ning sellel on farmakokineetilised omadused.

Teise eksperimendi esimese faasi kliinilistel katsetel oli 41 patsienti, kellel olid vähi metastaasid jõudud maksa. Neile manustati RNAi-d lipiidsete nanopartiklite vahendusel. RNAi sihtmärgiks olid kaks geeni, mis kodeerivad vähi rakkude kasvamiseks vajalikke valke. Need valgud on vaskulaarse endoteeli kasvufaktor (VEGF) ja kääviniidi kinesiini valk (KSP). Tulemused olid kliinilisest vaatepunktist kasulikud, vähk stabiliseerus pärast kuut kuud või mõne patsiendi puhul vähenesid metastaasid. Farmakodünaamilised biopsia analüüsid näitasid, et patsientidelt võetud kudedes olid RNAi kompleksid. See tõestas, et molekulid jõudsid ettenähtud sihtmärk-rakkudesse.

Kontseptsiooni uuringud on näidanud, et Ebola viirusele suunatud siRNA-d võivad olla inimestel efektiivsed kokkupuutejärgsed profülaktikavahendid. Katses elasid kõik osalenud ahvilised üle surmava koguse Zaire Ebola viirust (ZEBOV), mis on kõige ohtlikum ebola tüvi.