Otsing sellest blogist

UUS!!!

Albinism

Albinism  (ka  albinootilisus ,  pigmenditus ) on osaline või täielik  värvaine  ehk  pigmendi   melaniini  puudumine, mistõttu  nahk  ja  k...

teisipäev, 18. veebruar 2025

Nekroos

Nekroos ehk kärbus ehk koekärbus (ladina keeles necrosis) on enamiku eukarüootsete elusorganismide osa (elundikoe või koeosa) rakkude kohalik programmeerimata surm erinevate kahjustavate tegurite toimel.

Nekroosi võivad põhjustada mitmed tegurid ja organismid. Taimedel on loomadest erinevad signaalmolekulide rajad ja taimekudedes võivad nekroosi ehk nekrootilise ülitundlikkuse vastuse (inglise keeles hypersensitivity response) esile kutsuda nii toitainete vaegus, viirusedbakteridümarussid kui ka stress.

Loomadel

Inimestel

Morfoloogiliselt võib nekroose liigitada järgmiselt:

  • Koagulatsiooni nekroos
  1. Infarkt
  2. Kaseoosne nekroos
  3. Pseudomembranoosne nekroos
  4. Fibrinoidne nekroos
  5. Vahajas ehk Zenkeri nekroos
  6. Osteonekroos
  7. Lipolüütiline nekroos
  8. Kuiv gangreen
  • Kollikvatsiooni nekroos
  1. Koepehmestus
  2. Niiske gangreen

Kasvaja nekrotiseerumine

Pahaloomuliste kasvajate kasv on nii kiire, et tihti ei jõua verevarustus kasvajarakke vajalike toitainetega varustada ning seetõttu tekib pahaloomulistes kasvajates nekroos. Esineb mitmesuguseid kasvaja nekroosi tüüpe: kasvajarakkude kokkupuutel väliskeskkonnaga ja võimaliku anaeroobse infektsiooniga tekib kasvajas ja elundis gangreen (näit emakavähi korral), nekroosi välja murdumisel kasvajast tekib kasvaja haavandumine, õõneselundis tekib mulgustus, näärmekasvajates (näiteks rinnavähkeesnäärmevähk) tekib komedonekroos

esmaspäev, 17. veebruar 2025

Apoptoos

Apoptoos (kreeka keeles apoptosis '(lehtede) äralangemine') ehk programmeeritud rakusurm (ka loomulik rakusurm või ettemääratud rakusurm) on normaalse füsioloogiaga hulkraksete organismide rakkudes valdavalt rakkudesisene reguleeritud kompleksne süsteem, mille tööd reguleerivad nii geenid, retseptorid, transkriptsioonifaktorid kui ka rajad. Apoptoosi käivitudes DNA fragmenteerub, väheneb raku maht ja kaovad mitokondriaalsed funktsioonid. Toimub väiksemate rakumembraaniga kaetud osiste komplekteerimine, mis kohe fagotsütoosi käigus lagundatakse. Nii saab organism töödelda ja taaskasutada nii aegunud, vigaseid, muteerunud, liigsed või ebanormaalseid rakke, selleks et areneda, kasvada, paljuneda jms. Apoptoosi protsess võimaldab organismil kontrollida keha rakkude koguarvu. Apoptoos on omane enamikule hulkraksetele organismidele.

Tavalise täiskasvanud inimese organismis sureb apoptoosi tõttu ööpäevas 50 kuni 70 miljardit rakku. Et inimese kehas arvatakse olevat umbes 100 triljonit rakku, siis on see vaid umbes 0,06%. Uusi rakke sünnib mitoosi käigus umbes sama palju juurde.

Apoptoosil on oluline roll näiteks embrüo arengus, kus selle protsessi abil eemaldatakse varasemate evolutsiooniastmete tunnused, mis lootel arengu käigus tekivad. Samuti kujunevad tänu liigsete rakkude apoptootilisele surmale loote arengus sõrmede ja varvaste vahed.

Apoptoosi mittetoimumise korral võib organism areneda väärarengute, stigmade (näiteks sündaktüülia) või atavismidega (näiteks kolmas rinnanibu).

Rakus, mis sureb vastavalt apoptoosi mehhanismile, toimuvad kindlad biokeemilised ja morfoloogilised muutused, mille tulemusena laguneb rakk väikesteks osadeks, vesiikuliteks, mis on ümbritsetud rakumembraaniga. Raku tsütoplasma komponendid ei satu rakkudevahelisse ruumi, vaid makrofaagid lagundavad need. Apoptoositsükkel toimub väga kiiresti, 30-60 minuti jooksul. Apoptoos erineb teist tüüpi rakkude surmast nekroosist

Apoptoosi rajad, valk p53, apoptosoom jt molekulid

Apoptoosi üks käivitajatest on valk p53, mis kontrollib raku DNA seisukorda. Kui selle valgu funktsioon on kahjustatud, loomulik apoptoos ei saa käivituda võib tekkida rakkude kontrollimatu paljunemine – hea- ja pahaloomulised kasvajad. Peale rakusisese surma ahelreaktsiooni on olemas ka väline apoptoosirada, mille käivitavad T-rakud, mis omakorda käivitavad rakusisesed rajad. Teisisõnu rakk võib siirduda apoptoosile üksnes sisemiste radade kaudu või välimiste radade kaasabiga. Rada tähendab vastavate molekulide reaktsioone, mis ahelreaktsioonina viivad raku programmeeritud surmani. Üks tähtis rakusisene molekul, mis rakku surmateel, varajases apoptoosi faasis edasi aitab on mitokondrites sisemembraanis paiknev valk tsütokroom-c. Tavaliselt on selle molekuli funktsioon elektronide transportahelas elektronide edasi- ja ülekandmine. Kui apoptoos vallandub, moodustuvad mitokondri välismembraani valkudest Bax ja Bak kanalid, mille kaudu tsütokroom-c väljub mitokondrist raku tsütoplasmasse, mis viib nõndanimetatud apoptosoomi ja kaspaaside molekulide aktiveerimiseni. Kaspaasid viivad rakusurma lõpuni. Apoptoosi rada on keerulisem, detailiderohke, paljude molekulide koostöö. Vaid üldjoontes kulgeb rada ülalpool kirjeldatud viisil.

3D structure of the human apoptosome-CARD complex.
inimese apoptosoomi 3D struktuur.

Apoptoosi uurimine

2002. aastal said Sydney BrennerRobert HorvitzJohn E. Sulston Nobeli füsioloogia- või meditsiiniauhinna varbussi (Caenorhabditis elegans) rakkude arenguliinide koostamise eest, mille käigus täpsustati ka programmeeritud rakusurma toimemehhanismi.

laupäev, 15. veebruar 2025

Hemofiilia

Hemofiilia ehk veritsustõbi (ladina keeles haemophilia) on ühe või mitme hüübimisfaktori kaasasündinud vaegusel või hüpofunktsioonil tuginev pärilik veritsushaiguste rühm.[1]

Hemofiilia on kaasasündinud pärilik vere hüübimise puudulikkus, mille tagajärjel ei teki veresoone vigastuse korral vere hüüvet ehk trombi, mis peataks verejooksu. Enamasti on hemofiilia pärilik, kuid harva leitakse täiesti uus defekt haigust põhjustavas geenis. Hemofiiliahaigel on verejooksud pikaajalisemad, tekivad kergesti verevalumid ja on suurenenud risk liigese- ja ajusisesteks verejooksudeks.

KlassifikatsioonRedigeeri

Eesti Haigekassas (2013) rakendatavas rahvusvaheliste haiguste klassifikatsioonisüsteemis RHK-10-s klassifitseeritakse autoimmuunsed veritsustõved alampeatükis Koagulatsioonidefektid e hüübivuspuuded, purpur ja muud hemorraagilised seisundid, mida vajadusel täpsustatakse alamjaotistes:

  • A-hemofiilia ehk klassikaline hemofiilia ([D66] VIII hüübimisfaktori pärilik puudulikkus) – VIII hüübimisfaktori puudulikkusest tingitud, X-kromosoomidega retsessiivselt päritav poistel avalduv veritsustõbi[1];
  • B-hemofiilia ([D67] IX hüübimisfaktori pärilik puudulikkus) – IX hüübimisfaktori puudulikkusest tingitud, X-kromosoomidega restsessiivselt päritav poistel avalduv veritsustõbi[1];
  • C-hemofiilia ([D68] pärilik XI hüübimisfaktori puudulikkus) – XI hüübimisfaktori puudulikkusest tingitud, autosoomidega päritav veritsustõbi (sooga mitteseotud)[1] jt.

DiagnoosRedigeeri

Hemofiilia puhul on iseloomulikuks veritsuse esinemine kas ühel või mitmel meessoost inimesel suguvõsas. Diagnoosi täpsustamiseks määratakse vere hüübimisnäitajad: IX hüübimisfaktor, VIII hüübimisfaktor, trombotsüütide hulk, APTT (osaline tromboplastiini aeg), PT (protrombiini aeg), veritsusaeg, fibrinogeeni hulk.[2] Kui veritsushaigus diagnoositakse perekonnas esmakordselt, on vajalikud mitmesugused hüübimissüsteemi uuringud. Kui on kindlaks tehtud, missugused hüübimisfaktori aktiivsus on normist madalam, siis diagnoositakse teistel pereliikmetel haigus juba kiiremini.[3]

RaskusasteRedigeeri

Hemofiiliat põhjustavad mitmed erinevad mutatsioonid VIII, IX või XI hüübimisfaktori geenis. Raske hemofiilia korral on hüübimisfaktori aktiivsus väga madal (vähem kui 1%), keskmise hemofiilia korral 1-5% ja kerge hemofiilia korral 5-40% terve inimese hüübimisfaktori aktiivsusest [4].

SümptomidRedigeeri

Hemofiiliale on iseloomulikud sisemised ja välimised verejooksud. Sõltuvalt haiguse raskusastmest on verejooksude esinemissagedus erinev. Raske hemofiilia põhjustab sagedasi verejookse, kuid kerge hemofiilia korral võib verehüübimisprobleem kaasneda ainult trauma või operatsiooni tagajärjel.

Haigusega kaasneb haiguslik kalduvus verejooksude tekkeks, mis ei peatu ning seda põhjustab vere puudulik hüübimisprotsess.[5] Hemofiiliale on iseloomulik verejooks liigestesse ja lihastesse, veritsus tekib mõne aja pärast peale kerget traumat või ka iseeneslikult. Verejooks liigesesse põhjustab valu ja liigese turset ning võib põhjustada püsivaid liigesekahjustusi. Haavad veritsevad kaua (nahavigastus, hamba eemaldamine, operatsioon). Sisemine verejooks soolde või kuseteedesse põhjustab vere eritumist väljaheitega või uriiniga. Eluohtlikud on ajusisesed verejooksud ja hingamisteede sulgust põhjustavad verejooksud.[2] Raskemal juhul avaldub hemofiilia juba varases lapseeas, kergema vormi korral alles täiskasvanueas.

Keskmine eluigaRedigeeri

Nagu enamik haiguse näitajaid, sõltub ka eluiga haiguse raskusest ja ravi kättesaadavusest. Inimestel, kellel on raske hemofiilia ja kes ei saa adekvaatset tänapäevast ravi, omavad oluliselt lühenenud eluiga ja tihti ei jõuta täiskasvanu ikka. Enne 1960-ndaid, kui mõjus ravi ei olnud veel kättesaadavav, oli nende keskmine eluiga vaid 11 aastat.[6] Tänapäeval on hemofiiliahaigete eluiga pikenenud ning adekvaatse ravi korral on enamikul haigetel võimalik elada täiskasvanuks ning osaleda aktiivselt igapäevaelus.

PärilikkusRedigeeri

Hemofiiliat põhjustavad mutatsioonist X-kromosoomis.[7] Hemofiilia haigust põhjustavad mutatsioonid kahes erinevas lookuses.[8] VIII hüübimisfaktori geen on Xq28 regioonis ja IX hüübimisfaktori geen Xq27 regioonis.

Haigus päritakse X-liitelisel retsessiivsel teel.[3] See tähendab, et mutatsiooniga hüübimisfaktori geeni omavatel naistel, nn kandjatel on 50% võimalus kanda geen üle igale tütrele (kandja) ning igale pojale (kes põeb hemofiiliat). X-kromosoomis olev geneetiline mutatsioon põhjustab vere hüübimisfaktori tootmises probleeme.[7] Kuna hüübimisfaktor on seotud X-kromosoomiga (naistel on kaks X-kromosoomi, meestel üks X-kromosoom ja üks Y-kromosoom), haigestuvad poisslapsed, naisterahvad on haiguse edasikandjad. Naiste teine X-kromosoom sisaldab normaalset hüübimidaktori geeni ning seetõttu ei lase haigusel avalduda, küll aga võib mõningatel juhtudel esineda kergem verehüübimishäire. Tõeliselt harvade geneetiliste mutatsioonide ja pärilike tegurite kokkulangemisel võib ka naine omada rasket verehüübimishäiret .[7] Sõna "hemofiilia" kasutas selle haiguse kirjeldamisel esimesena Hopff 1828. aastal.[9] Hemofiilia mõjutab inimesi kõikides etnilistes gruppides. Umbes 30% patsientidel, kellel on hemofiilia, pole peres varem hemofiiliat esinenud, mistõttu arvatakse, et haigust põhjustas spontaanse mutatsiooni hüübimisfaktori geenis.[10]

Vere hüübimineRedigeeri

Next.svg Pikemalt artiklis vere hüübimine

Vere hüübimine organismis on seotud paljude valkude ja ensüümidega, nii näiteks komplekteeritakse vere hüübimiseks vajalikke valke ka maksas.[11]

Vere hüübimisel toimub hüübimisvalkude järjest aktiveerimine veresoone vigastuse kohas, mille tulemusel kaasates koefaktorit ja aktiveerunud trombotsüüte tekib verehüüve ehk tromb. Vere hüübimiseks vajalikke valke nimetatakse hüübimisfaktoriteks, tähistatakse Rooma numbritega ning neid sünteesitakse peamiselt maksas .

Faktor VIII kontsentraat

RaviRedigeeri

Hemofiilia raviks kasutatakse puuduoleva hüübimisfaktori asendamist.

Kasutatakse inimese vereplasmast eraldatud VIII või IX hüübimisfaktori preparaate, mida manustatakse veeni. Manustamine toimub vastavalt vajadusele (verejooks on olemas või on kahtlus verejooksule) või profülaktiliselt verejooksu ennetamiseks. Profülaktilist manustamist 2-3 korda nädalas kasutatakse lastel verejooksude ennetamiseks.

Nii A- kui ka B-hemofiilial on sõltuvalt hüübimisfaktori puudusest kolm raskusastet. Raske hemofiilia korral on hüübimisfaktori kontsentratsioon organismis alla 1%, mõõduka hemofiilia korral 1–5% ja kerge korral üle 5%. Vastavalt raskusastmele saab inimene ka vastavat ravi.

Hemofiilia edasikandjad (nii hemofiiliat põdevad kui ka ühe geeni koopiaga inimesed) peavad teadma hemofiilia ravi võimalusi ja hoolduse olukorda, et arvestada, millega peab hemofiiliahaige hakkama saama.

Hemofiiliahaigete ravi on mitmekülgne, hõlmates hematoloogipediaatriortopeedistomatoloogireumatoloogipsühholoogi ja geneetiku tööd. Kõige olulisem on asendusteraapia, mis seisneb puuduva hüübimisfaktori manustamises.[12]

Puuduva hüübimisfaktori asendamiseks verejooksu korral süstitakse selle hüübimisfaktori kontsentraat veeni. Kaks-kolm korda nädalas saadakse puuduva hüübimisfaktoriga (VIII või IX) ravi, mida regulaarselt tehes väheneb spontaansete verejooksude ja liigesekahjustuste risk.[7] Hemofiilia raskete vormide korral ja ka näiteks operatsioonide eelselt kasutatakse hüübimisfaktori manustamist profülaktiliselt, et vältida verejooksu teket.[2]

GeeniteraapiaRedigeeri

Hemofiiliat põhjustab mutatsioon hüübimisfaktorit kodeerivas geenis ning seetõttu on teadlastel olnud väga suur huvi leida sobiv geeniteraapia meetod selle kaasasündinud eluaegse haiguse ravimiseks [13] .

2011. aastal teatasid Briti ja Ameerika uurijate meeskond eduka ravi avastamisest B-hemofiilia raviks, kasutades geeniteraapiat [14]. Uurijad sisestasid hüübimisfaktor IX geeni adeno-assotsieerunud viirusvektorisse, mis süstiti veeni ning mis jõudis maksarakkudesse, kus IX hüübimisfaktorit toodetakse, ning mis jääb väljapoole kromosoome ja ei mõjuta teisi geene. Vältimaks keha kaitsereaktsiooni viirusevektori vastu, raviti patsiente steroididega, et pärssida nende immuunvastust. Ühest viirusvektori süstist piisas 4 haigele 6-st, et patsient hakkas tootma IX hüübimisfaktorit ning tema verejooksude sagedus vähenes ja ta vajas vähem asendusravi [14]. Teadlased on esialgu keskendunud B-hemofiilia ravimisele, sest IX hüübimisfaktori geen on palju väiksem kui VIII hüübimisfaktori geen ja sellega on kergem töötada.[15]

Alternatiivne meditsiinRedigeeri

Alternatiivsed ravimeetodid võivad kergendada valu, kuid verejooksu peatamiseks on vajalik siiski asendusravi, et asendada puuduolev hüübimisfaktor.

Kuigi see pole tavapäraste ravimite asendus, näitavad esialgsed teaduslikud uuringud, et hüpnoos ja enesesisendus võivad olla tõhusad, et vähendada verejooksu ja lühendada selle kestust ja seega ka asendusravi sagedust. Maitsetaimed ja ravimtaimed, mis tugevdavad veresooni ja soodustavad veresoone kudede kokkutõmmet, võivad kaasa aidata vere hüübimisel, kuid täielikuks vere hüübimiseks on vajalik ikkagi puuduoleva hüübimisfaktori manustamine. Samas pole ametlikult heakskiidetud teaduslikke uuringuid, et toetada neid väiteid.[10]

EnnetamineRedigeeri

Hemofiilia puhul peaks inimene hoiduma aspiriini ja teiste verd vedeldavate ravimite kasutamisest. Ettevaatlik tuleks olla ka K-vitamiini sisaldavate taimede ja vitamiinipreparaatidega, sest need võivad soovimatult mõjutada vere hüübimist. Hemofiiliat põdevale inimesele ei tohi teha lihasesiseseid süste, sest süsti kohta võib tekkida suur verejooks. Hemofiilia raviks kasutatava inimese vereplasmast eraldatud hüübimisfaktori kontsentraadiga võib olla risk üle kanda haigustekitajaid sh hepatiit B. Seetõttu peaks veritsustõbe põdevat inimest vaktsineerima B-hepatiidi vastu. Siiski on tänapäeval viirusinfektsioonirisk kõvasti vähenenud tänu vereplasma doonorite selektsioonile ja korralikule testimisele ning kontsentraadi tootmisprotsessis kasutatavatele viirusinaktivatsioonimeetoditele. Haiguse esinemisel perekonnas on võimalik haiguse kandjad geneetilise uuringu abil kindlaks teha.[2]

Hemofiilia EestisRedigeeri

Eestis on 2016.a aasta andmetel 107 hemofiiliahaiget (97 hemofiilia A, 10 hemofiilia B), 96 von Willebrandi haiget ja 68 teiste verehüübimishäiretega haiget. Nendest 61% on vanuses 19-44 aastat ja 21% vanemad kui 45 aastat[16].

Eestis elab 2013. aasta seisuga teadaolevalt veidi alla saja hemofiiliat põdeva inimese, kelle igapäevane toimetulek sõltub otseselt õigeaegse ravi kättesaadavusest. Nende hulgas on ka lapsi. Eesti on ainus riik Euroopas, kus hemofiiliahaigetel ei ole ligipääsu kaasaegsele ravile ehk rekombinantsete faktori preparaadile, mis võimaldaks hemofiiliahaigete riskivaba ravi. Eesti Hematoloogide Selts on selle lisamist Haigekassa raviteenuste nimekirja taotlenud alates 2009. aastast.

Inimese vereplasmast valmistatud hüübimisfaktori kontsentraatide probleemidRedigeeri

Hüübimisfaktori preparaatide valmistamisel eraldatakse inimese doonorvere plasmast VIII või IX hüübimisfaktor. Kuna vereplasma võib sisaldada ka verega üle kantavaid viirusi jt haigustekitajaid, siis on väga oluline vereplasma kvaliteet ja kindlad nõuded vereplasma testimiseks enne hüübimisfaktorite tootmisprotsessi. Tänapäeval on kasutusel hüübimisfaktori preparaatide valmistamisel vähemalt kaks erinevat viirusinaktivatsiooniprotsessi, et tagada maksimaalne ravimi ohutus.

Enne 1985. aastat polnud USA-s ühtegi seadust, mis oleksid kehtestanud inimvere plasmast valmistatavate veretoodete analüüse. Selle tagajärjel oli paljudel hemofiiliaga patsientidel, kes said testimata ja kontrollimata hüübimisfaktorit enne 1992. aastat, eriti suur oht nakatuda HIV-ga ja C-hepatiidi viirusega nende veretoodete kaudu. Arvatakse, et rohkem kui 50% hemofiilia populatsioonist ehk üle 10 000 inimese ainuüksi Ameerika Ühendriikides nakatus HIV viirusega kasutades hüübimisfkatori kontsentraate, mille valmistamisel oli kasutatud HIV viirusega nakatunud vereplasmat.[17]

Täna Eestis haigete raviks kasutatav ravim on toodetud inimeste doonorverest, kuid mille tootmisprotesse on täiendatud viirusinaktivatsioonimeetoditega, mis tähendab et on olemas risk ravi saades nakatuda vere kaudu leviva viiruse või haigustekitajaga (Creutzfeldti-Jakobi tõbi, hepatiit, HIV jt).

Uudsemad on rekombinantsel meetodil valmistatud hüübimisfaktori preparaadid, kus VIII või IX hüübimisfaktor toodetakse koekultuuris rakkude poolt ning need on seetõttu ohutumad. Rekombinantse DNA meetodil toodetud preparaatidega ei ole vere kaudu levivate haigustekitajate ülekande probleeme, kui preparaat ei sisalda ühtegi vereplasmast fraktsioneeritud valku, sh albumiini, mida lisatakse sageli rekombinantsele hüübimisfaktorile stabilisaatorina.

Tänapäevane raviviis ehk rekombinantne faktor ei põhine vereplasmal, mistõttu on see täiesti vaba vere kaudu levivatest patogeenidest. Patogeenidest vabaolek näitab, et ravim on praegusest plasmal põhinevast preparaadist oluliselt ohutum (ei kanna haigusi) ning ravimi tootmine ei sõltu elanikkonna (doonorite) tervisest.[18]

Kuninglik haigusRedigeeri

X-liitelise hemofiilia haiguse kõige kuulsamaks juhtumiks on Vene imperaatorliku perekonna haigusjuhtum 20. sajandi algusest. Tsaar Nikolai II-l ja tsaarinna Aleksandral oli neli tütart ja üks poeg. Poeg Aleksei põdes hemofiiliat ning haigust põhjustav geen oli üle kandunud põlvest põlve, alates Suurbritannia kuningannast Viktoriast, kes oli selle kuninglikus perekonnas hemofiilia haigust põhjustava geeni esmakandja (B-hemofiilia).[8][19][20] Aleksei hemofiilia tõi kaasa Grigori Rasputini tõusu. Rasputin oli ainuke, kes suutis leevendada Aleksei kannatusi ning tsaariperekond usaldas teda. Tänu sellele sai Rasputin sekkuda ka riigiasjadesse ja anda tsaarile nõu. Arvatakse, et kui Aleksei ei oleks põdenud hemofiiliat, siis Rasputin ei oleks omanud kunagi sellist mõju Vene poliitikas I maailmasõja ajal ja Romanovite võimuloleku aeg oleks kestnud kauem. Nikolai II ja ülejäänud Romanovite hoolitsemine Aleksei eest suunas tähelepanu sõjalt ja valitsemiselt kõrvale.

reede, 14. veebruar 2025

Mikro-RNA

MikroRNA-d (lühendatult miRNA; ingl microRNA) on lühikesed, keskmiselt 20–25 nukleotiidi pikkused üksikahelalised RNA-molekulid, mida sünteesitakse eukarüootsete rakkude tuumades.

MikroRNA-203 sekundaarstruktuur

MiRNA-d on posttranskriptsioonilised regulaatorid, mis seonduvad messenger RNA (mRNA) transkriptide komplementaarsetele järjestustele. Tavaliselt on selle tagajärjeks translatsiooniline repressioon või märklaud-mRNA degradatsioon ja geeni vaigistamine. Inimese genoom võib kodeerida üle 1000 miRNA ning nende märklauaks võib olla kuni 60% imetajate geenidest. miRNA-sid leidub inimesel rohkelt väga erinevates koetüüpides.

miRNA-d erinevad oma omadustelt taimedes ja loomades. Taimedes on miRNA-de komplementaarsus oma märklaud-mRNAle täiuslik või mõne üksiku mittesobiva paardumisega. Loomades (Metazoa) hõlmab miRNA komplementaarsus 5` otsa 2–7 aluspaari, mikroRNA alusjärjestust (ingl seed region). Üks mikroRNA võib seostuda ühe ja sama mRNA mitme erineva saidiga või paljude erinevate mRNA-dega.

Veel üks erinevus taimedes ja loomades on märklaud-mRNA seostumissaidi asukohas. Loomades asuvad miRNA-de märklaudsaidid mRNA-de 3` mittetransleeritavates regioonides (3`UTR- untranslated region). Taimedes võivad märklaudsaidid asuda samuti mRNA-de 3`mittetransleerivates regioonides, kuid sagedamini paiknevad nad kodeerivas alas. miRNA-de geenide järjestused on eukarüootsetes organismides küllalt konserveerunud. miRNA-d arvatakse olevat organismidele eluliselt oluline ja evolutsiooniliselt vana geneetilise regulatsiooni komponent.

Esimesi miRNA-sid kirjeldati 1990. aastate algul. Siiski, miRNA-sid ei tunnistatud kui eraldi konserveerunud funktsioonidega bioloogiliste regulaatorite klassi kuni 2000. aastate algusaastateni. Alates sellest ajast on miRNA-de uurimine paljastanud mitmeid rolle negatiivses regulatsioonis (transkripti degradatsioon, translatsiooniline supressioon) ja võimalikku seotust positiivse regulatsiooniga (translatsiooniline ning transkriptsiooniline aktivatsioon). miRNA-d osalevad geeniregulatsiooni mõjutajatena tõenäoliselt peaaegu kõikides bioloogilistes protsessides. Erinevates rakutüüpides ja kudedes esinevad erinevad ekspresseerunud miRNA-de komplektid.

Kõrvalekaldeid miRNA-de ekspressioonis on seostatud mitmete haiguslike seisunditega ning uurimise all on miRNA-del põhinevad teraapiad.

Ajalugu

Victor Ambros, Rosalind Lee ja Rhonda Feinbaum avastasid 1993. aastal mikroRNA-d, kui nad uurisid geen lin-14 rolli varbussi (Caenorhabditis elegans) arengus.[26] Nad leidsid, et valk LIN-14 rohkust reguleeris lühike RNA produkt, mida kodeeris lin-4 geen. Lin-4 geeni 61-nukleotiidne prekursor matureerus 22 nukleotiidi pikkuseks RNAks, mis sisaldas osaliselt komplementaarseid järjestusi mitmetele 3`UTR järjestustele lin-14 mRNAs. See komplementaarsus oli nii vajalik kui ka piisav inhibeerimaks lin-14 mRNA translatsiooni LIN-14 valguks. lin-14 RNA oli esimene identifitseeritud mikroRNA, kuigi tollel ajal peeti selle olemasolu nematoodi (C.elegansi) omapäraks. Alles 2000. aastal kirjeldati järgmist selletaolist RNA-d: let-7, mis represseeris geenide lin-41lin-14lin-28lin-42 ja daf-12 ekspressiooni C.elegansi arengustaadiumite üleminekute jooksul. Peagi leiti, et let-7 on konserveerunud paljudes liikides, viidates võimalusele, et miRNA-sid leidub seni arvatust rohkemates organismides.[27][28]

NomenklatuurRedigeeri

Standardse nomenklatuuri süsteemi alusel määratakse eksperimentaalselt kinnitatud miRNA-dele nimed enne nende avastamisest teavitavate publikatsioonide avaldamist.[29][30] Eesliitele 'mir ' järgneb sidekriips ja number, kusjuures viimane näitab sageli nimetamise järjekorda. Näiteks mir-123 nimetati ning tõenäoliselt ka avastati enne kui mir-456. Eesliide ' mir-' (ilma suurtäheta) viitab pre-miRNAle, suure tähega 'miR-' aga miRNA küpsele vormile. Peaaegu identsete järjestustega miRNA-d, mis erinevad vaid nukleotiidi või paari poolest, märgitakse lisaks alaindeksitega. Näiteks, miR-123a oleks lähedases suguluses miR-123b-ga. Pre-miRNA-d, mille tulemuseks on 100% identsed küpsed miRNA-d, kuid mis asuvad genoomis erinevates kohtades, märgitakse täiendavate numberliidetega, mis on sidekriipsuga eraldatud. Näiteks pre-miRNA-d hsa-mir-194-1 ja hsa-mir-194-2 viivad identse küpse miRNA (hsa-miR-194) avaldumiseni, kuid paiknevad genoomis erinevates kohtades. Päritolu liik on tähistatud kolmetähelise eesliitega, näiteks hsa-miR-123 on inimese (Homo sapiens) ning oar-miR-123 lamba (Ovis aries) miRNA. Teised sageli kasutatavad eesliited: V-viiruslik (miRNA, mis on kodeeritud viiruse genoomi poolt), d-Drosophila miRNA (puuviljakärbes, klassikaline geneetikas kasutatav mudelorganism). Kui kaks küpset miRNAd pärinevad sama pre-miRNA vastasõlgadest (eri otstest), märgitakse need −3p või −5p järelliidetega (varem on kasutatud erinevuse väljatoomiseks 's' (sense) ja 'as' (antisense)). Kui on teada suhtelised üheahelaliste miRNA-de ekspressioonitasemed, tähistab nime taga olev tärn (*) vastava miRNA avaldumist madalamatel tasemetel kui juuksenõela struktuuri vastasõlas olev miRNA. Näiteks miR-123 ja miR-123* jagavad ühist pre-miRNA juuksenõela, aga rakus on rohkem miR-123e.

BiogeneesRedigeeri

miRNAde produktsioon omaenese geenist

Enamik kirjeldatud miRNA geenidest on intergeensed või on orienteeritud antisense positsioonis naabergeenide suhtes ning seetõttu on alust arvata, et neid transkribeeritakse iseseisvate üksustena.[31][31][32][33][34] Kuni 40% miRNA geenidest võivad paikneda valke kodeerivate ja valke mittekodeerivate geenide intronites või isegi mittekodeerivate pikkade transkriptide eksonites.[35] Need on tavaliselt, kuid mitte ainult, sense orientatsioonis[36][37] ning on seetõttu harilikult reguleeritud koos oma peremeesgeenidega.[35][38][39] Teised miRNA-de geenid, mille puhul on näidatud üht ühist promootorit, hõlmavad 42–48% kõikidest miRNA-dest, mis pärinevad polütsistroonsetest ühikutest ning sisaldavad mitmeid diskreetseid (eraldiseisvaid) linge, millest küpsed miRNA-d protsessitakse[32][40]. See ei tähenda tingimata, et ühe perekonna küpsed miRNA-d on struktuurilt ja funktsioonilt homoloogsed. Eelpool mainitud promootori motiivide puhul on leitud mõningaid sarnasusi (valke kodeerivate) geenide promootoritega, mida transkribeerib RNA polümeraas II.[32][41] 6% inimese miRNA-de puhul esineb RNA toimetamist (RNA editing): järjestuste kohtspetsiifilisi modifikatsioone, mille eesmärk on toota teistsuguseid produkte, kui algselt kodeeritud DNA poolt. See suurendab miRNA-de tegevuse mitmekesisust ja ulatust kaugelt rohkem, kui seda võimaldab genoom üksinda.

TranskriptsioonRedigeeri

Harilikult transkribeerib RNA polümeraas II (Pol II) miRNA-de geene.[32][41] Polümeraas seondub sageli promootorile, mis asetseb sellise DNA järjestuse lähedal, mis kodeerib tulevast pre-miRNA (prekursor miRNA- tekib Drosha lõikamise tagajärjel, stem-loop struktuuriga) juuksenõela lingu. Transkriptile lisatakse 5’ otsa cap-struktuur, spetsiifiliselt modifitseeritud nukleotiid, ning polüadenüleeritakse mitme adenosiiniga (adeniin + β-D-riboos), selle tagajärjel moodustub polü(A) saba[32][36]. Viimaks pre-miRNA splaissitakse. Loomade miRNA-d on algselt transkribeeritud osana ~80 nukleotiidse RNA stem-loop struktuuri õlast. See struktuur moodustab omakorda osa mitmesaja nukleotiidi pikkusest primaarsest miRNAst (pri-miRNA- polümeraas II transkriptsiooni tulemus, selle lõikamisel Droshaga saadakse pre-miRNA).[32][36] Juhul kui stem-loop prekursor asub 3’ UTR järjestuses, võib transkript funktsioneerida nii pri-miRNA kui ka mRNAna.[36] RNA polümeraas III (Pol III) transkribeerib mõningaid miRNA-sid, eriti neid, millel on upstream (ülesvoolu) Alu järjestused (teatud tüüpi mobiilsed elemendid); transport RNA-sid (tRNA) ja MWIR (mammalian wide interspersed repeat) promooteri üksuseid.[42]

Tuumasisene protsessimineRedigeeri

Üksainuke pri-miRNA võib sisaldada 1–6 miRNA prekursorit. Iga juuksenõelastruktuur koosneb umbes 70 nukleotiidist. Juuksenõela ümbritsevad külgedelt efektiivseks protsessinguks vajalikud järjestused. Tuumavalk DGCR8 (DiGeorge Syndrome Critical Region 8 või „Pasha“ selgrootutes), mis on nime saanud DiGeorge sündroomi järgi, tunneb ära juuksenõelte kaheahelalise RNA struktuuri pri-miRNAs. DGCR8 seostub ensüüm Droshaga, mis lõikab RNA-d. Koos moodustavad nad kompleksi[43], milles DGCR8 suunab Drosha katalüütilist RNaas III domeeni juuksenõela struktuure pri-miRNAst lahti lõikama. Drosha katkestab RNA-d umbes 11 nukleotiidi kauguselt juuksenõela basaalsest osast (kaks helikaalset pööret tüvest eemal). Tekkinud produktil on kahenukleotiidne üleulatuv ots 3’ otsas; 3’ hüdroksüül- ja 5’ fosfaatgrupid. Seda nimetatakse pre-miRNAks (prekursor-miRNA).

Pre-miRNA-sid, mis splaissitakse otse intronitest ning hoiduvad Drosha ja DGCR8 omavahelisest kompleksist, tuntakse mirtronitena. Algselt leiti mirtroneid ainult äädikakärbsel ja varbussil, kuid nüüdseks on neid leitud ka imetajatel.[44]

Võimalik, et kuni 16% pri-miRNA-dest muudetakse RNA toimetamise (ingl RNA editing) kaudu.[45][46][47]

Kõige tavalisemal juhul katalüüsib kaheahelalise RNA spetsiifiline adenosiini deaminaas (ingl ADAR- double-stranded RNA-specific adenosine deaminase) adenosiini inosiiniks (A > I) muutumise transitsiooni. RNA toimetamine võib peatada tuumasisest protsessingut (näiteks pri-miR-142 protsessimise, mis viib degradatsioonini ribonukleaas Tudor-SN kaudu) ning muuta downstream (allavoolu) protsesse, kaasa arvatud tsütoplasmaatilist miRNA protsessimist ning märklaua spetsiifilisust (näiteks muutes miR-376 nn alusjärjestust (ingl seed region) kesknärvisüsteemis).[45]

Eksport tuumastRedigeeri

Eksportiin-5 (ingl exportin-5) transpordib pre-miRNA juuksenõelad tuumast tsütoplasmassse. See valk tunneb ära kahenukleotiidse üleulatuva osa pre-miRNA juuksenõela 3' otsas, mille tekitas RNaas III-set aktiivsust omav Drosha. Eksportiin-5 vahendatud transport tsütoplasmasse vajab lisaenergiat, kasutades Ran valgu külge seotud GTPd.[48]

Tsütoplasmaatiline protsessimineRedigeeri

Tsütoplasmas lõikab pre-miRNA juuksenõela RNaas III ensüüm Dicer.[49] See endoribonukleaas interakteerub juuksenõela 3' otsaga ning lõikab ära lingu, mis ühendab 3' ja 5' õlgasid; tootes umbes 22 nukleotiidi pikkuse miRNA-miRNA* dupleksi (guide-ahel ja passanger-ahel, viimane on tähistatud tärniga ning läheb lagundamisele, esimene seevastu ühineb RISC kompleksiga). Üleüldine juuksenõela pikkus ja lingu suurus mõjutavad Diceri protsessimise efektiivsust, samuti mõjutab lõikamist miRNA-miRNA* paardumise mittetäielik iseloom.[49][50] Kuigi potentsiaalselt võivad funktsionaalse miRNAna tegutseda mõlemad dupleksiahelad, kaasatakse harilikult ainult üks neist RNA-indutseeritud vaigistamise kompleksi (RISCRNA-induced silencing complex), kus toimub miRNA ja tema märklaud-mRNA interakteerumine.

Biogenees taimedesRedigeeri

miRNA-de biogenees taimedes erineb biogeneesist loomades põhiliselt tuumasisese protsessimise ja ekspordi etappides. Küpsemisjärgus miRNAd ei lõika taimedes kaks erinevat ensüümi, vaid mõlemat lõikamist teostab Diceri homoloog, lühendatult DL1 (ingl Dicer-like). DL1 ekspresseerub ainult taimerakkude tuumades, mis viitab sellele, et mõlemad reaktsioonid leiavad aset tuumasiseselt. Enne kui taime miRNA-miRNA* dupleksid tuumast välja transporditakse, metüleerib Hua-Enhancer1 (HEN1) nende 3' üleulatuvad otsad. Seejärel transpordib valk Hasty (HST, Eksportiin-5 homoloog) dupleksi tuumast tsütoplasmasse. Tsütoplasmas dupleks laguneb ja küps miRNA ühendatakse RISC kompleksiga.[51]

RISC kompleksRedigeeri

Archaeoglobus fulgiduse (arhe) argonatuvalgu PIWI domeen seotuna lühikese kaheahelalise RNA fragmendi külge. Argonauti sisaldava RISC kompleksi seondumine RNA juhtahela 5' otsa on RNA interferentsi jaoks kriitilise tähtsusega. (Konserveerunud türosiini jääk on näidatud helesinisega, kahevalentne magneesiumi katioon halli kerana)

Põhiartikkel: RNA-induced silecing complex

Küps miRNA on osa aktiivsest RISC kompleksist, mis sisaldab veel Dicerit ja mitmeid assotsieerunud lisavalke.[52] RISCi tuntakse ka mikroRNA nukleoproteiin kompleksina (ingl miRNP – microRNA ribonucleoprotein complex),[53] miRNAga seostunud RRISC-ile viidatakse mõnikord ka kui 'miRISC-le.

Diceri pre-miRNA protsessing võib toimuda paaris dupleksi lahtikeerdumisega. Üldiselt on RISC kompleksiga seotud ainult üks ahel, mis on valitud tema termodünaamilise ebastabiilsuse ja nõrgema aluspaardumise tõttu võrreldes teise ahelaga.[54][55][56] Stem-loop struktuuri positsioon võib samuti mõjutada ahela valikut.[57] Teist ahelat nimetatakse passenger-ahelaks tema madalamate tasemete pärast stabiilses seisundis ning tähistatakse tärniga (*). Reeglina passenger-ahel degradeeritakse. Mõningatel juhtudel on mõlemad dupleksiahelad elujõulised ning saavad funktsionaalseteks miRNA-deks.[58]

RISC kompleksi funktsiooni täitmisel on tsentraalse tähtsusega argonaut (Ago) valgu perekonna liikmed. Argonaute on vaja miRNA-indutseeritud geenide vaigistamiseks, nad sisaldavad kahte konserveerunud RNA seondamise domeeni: PAZ domeen, millele saab seonduda küpse miRNA üheahelaline 3' ots ning PIWI domeen, mis sarnaneb struktuurilt ribonukleaas H-ga ning funktsioneerib, interakteerudes juhtahela 5' otsaga. Nad seovad küpset miRNA-d ning orienteerivad seda interaktsiooniks märklaud mRNAga. Mõned argonaudid, näiteks inimese Ago2, otseselt lõikavad märklaua transkripti. Argonaudid võivad ka värvata lisavalke saavutamaks translatsioonilist repressiooni.[59] Inimese genoom kodeerib kaheksat argonaut-valku, mis jagatakse järjestuste sarnasuste alusel kahte perekonda: AGO (selle perekonna neli esindajat leiduvad kõikides imetajate rakkudes, inimese rakkudes nimetatakse neid E1F2C/hAgo-deks) ning PIWI (leitud idutee ning hematopoeetilistest tüvirakkudest).[59][60]

Täiendavad RISC kompleksi komponendid hõlmavad TRBP-d (ingl human immunodeficiency virus (HIV) transactivating response RNA (TAR) binding protein),[61] PACT-i (ingl protein activator of the interferon induced protein kinase(PACT)), SMN kompleksi, fragiilse X vaimse puude valku (ingl FMRP-fragile X mental retardation protein) ja Tudori stafülokokset nukleaas-domeeni sisaldav valku (ingl Tudor-SN -Tudor staphylococcal nuclease-domain-containing protein).[62][63]

Vaigistamise moodusRedigeeri

Geeni saab vaigistada mRNA-d degradeerides või takistades translatsiooni mRNAlt. On demonstreeritud, et täieliku komplementaarsuse korral miRNA ja tema märklaud-mRNA järjestuse vahel saab Ago2 mRNA-d lõigata ning juhtida selle otsesele degradatsioonile. Kuid kui täielikku komplementaarsust ei esine, siis saavutatakse geeni vaigistamine translatsiooni ärahoidmise teel.[15]

miRNA-de stabiliseerimineRedigeeri

Küpsete miRNA-de ringlus on vajalik järskudeks muutusteks miRNA-de avaldumisprofiilides. miRNA küpsemise jooksul tsütoplasmas tema kasutuselevõtt argonaut-valgu poolt arvatakse olevat stabiliseeriva mõjuga guide-ahelale, samal ajal kui passenger-ahel eelistatult hävitatakse. Seda on nimetatud ka "Use it or lose it" strateegiaks (Kasuta või kaota strateegia). Argonaut võib eelistatult säilitada miRNA-sid, millel on palju märklaudu, miRNA-de suhtes, millel on mõni üksik või ei ole ühtki märklauda. See viib tavaliselt märklaudu mitteomavate molekulide lagundamiseni.[64]

C.elegans'is vahendab küpsete miRNA-de lagundamist 5´> 3´ suunaline eksoribonukleaas XRN2, tuntud ka kui Rat1p.[65] Taimedes lagundavad miRNA-sid SDN (ingl small RNA degrading nuclease) perekonna liikmed vastupidises suunas (3 '> 5'). Sarnaseid ensüüme kodeeritakse ka loomade genoomides, aga nende roll pole veel teada.[64] Mitmed miRNA modifikatsioonid mõjutavad tema stabiilsust. Nagu näidatud töös mudelorganismiga Arabidopsis thaliana (harilik müürlook), küpsed taime miRNA-d paistavad olevat stabiliseeritud lisa metüülrühmadega 3' otsas. 2'-O-konjugeeritud metüülrühmad blokeerivad uratsiili (U) jääkide lisandumise 3' otsa uridüültransferaasi ensüümi abil. Seda viimast modifikatsiooni on seostatud võimaliku miRNA degradatsiooniga. Siiski, uridülatsioon võib osasid miRNA-sid hoopis kaitsta. Selle modifikatsiooni tagajärjed pole lõplikult teada. On täheldatud mõnede loomsete miRNA-de uridülatsiooni. Nii taimseid kui loomseid miRNA-sid saab muuta adeniini (A) jääkide lisamisega miRNA 3' otsa. Lisa A lisamine imetaja miR-122le, liver-enriched miRNA, mis on oluline C-hepatiidi puhul, stabiliseerib selle molekuli. Adeniini jäägiga lõppevad taimsed miRNA-d lagunevad aeglasemalt.[64]

Rakulised funktsioonidRedigeeri

miRNA-de funktsioon seisneb geeniregulatsioonis. Geenide aktiivsuse mõjutamiseks on miRNA-d komplementaarsed osaga ühest või mitmest informatsiooni-RNAst (mRNA) (ingl mRNA-messenger RNA). Loomade miRNA-d on tavaliselt komplementaarsed saidiga 3' UTRs, samal ajal kui taimede miRNA-d on harilikult komplementaarsed mRNA-de kodeerivate järjestustega.[66] Perfektne või peaaegu täiuslik aluspaaride seondumine märklaud mRNAga indutseerib RNA lõikamist.[67] See on taimset päritolu miRNA-de esmane talitlusviis.[68] Loomades paarduvad miRNA-d sageli vaid osaliselt ning inhibeerivad märklaud-mRNA valgu translatsiooni[69] selline mehhanism esineb ka taimedes, kuid harvemini.[68][70] mikroRNA-d, mis on märklaua suhtes osaliselt komplementaarsed, saavad kiirendada deadenülatsiooni, põhjustades mRNA-de varajasema degradatsiooni. Selleks, et osaliselt komplementaarsed miRNA-d oma märklauad ära tunneksid, peavad nukleotiidid 2–7 mRNA seed järjestuses[6][9] olema perfektselt komplementarsed mRNA teatud järjestusega.[71] miRNA-d võivad aeg-ajalt põhjustada histoonide modifitseerimist ning DNA promootorsaitide metülatsiooni, mis mõjutab märklaudgeenide avaldumist.[72][73]

Erinevalt taimede miRNA-dest on loomades miRNA-de märklauaks väga lai valik geene.[9] Siiski on kõikidele rakkudele omaste funktsioonidega seotud geenides suhteliselt vähem miRNA-de märklaudsaite ning tundub, et sellised geenid on valiku all, vältimaks miRNA-de märkalauaks olemist.[74]

dsRNA-d (double-strand RNA) võivad aktiveerida geeniekspressiooni, see mehhanism on saanud nimetuse "väikese RNA indutseeritud geeniaktivatsioon" (ingl small RNA-induced gene activationRNAa).[75] dsRNA-d võivad indutseerida endaga seotud geenide potentsiaalset transkriptsiooni aktivatsiooni. Seda omadust on demonstreeritud inimese rakkudes, kasutades sünteetilisi dsRNA-sid, mida kutsutakse väikesteks aktiveerivateks RNA-deks (ingl saRNAs – small activating RNA molecules), aga on näidatud ka endogeensete miRNA-de puhul.[75][76]

miRNA-de ja geenide (või pseudogeenide) komplementaarsetel paardumistel ning homoloogilistel järjestustel põhinevad interaktsioonid arvatakse olevat tugikanal, mis reguleerib paraloogsete geenide (ühise eellasega järjestused, tekivad duplikatsiooni teel) ekspressioonitasemeid. "Võistlevate endogeensete RNA-de" (ingl competing endogenous RNAs (ceRNAs) ) nime all tuntud miRNA-de ülesandeks on seonduda "mikroRNA vastuselementidele", geenidele ja pseudogeenidele, sel moel pakkudes veel ühe seletuse mittekodeeriva DNA ("rämps" DNA) püsivusele.[77]

EvolutsioonRedigeeri

mikroRNA-d on olulised fülogeneetilised markerid oma märkimisväärselt madala evolutsioneerumisastme tõttu.[78] Nende tekkimine võib olla üks põhjus, mis on võimaldanud arengut morfoloogiliste uuenduste vallas ning geeniekspressiooni spetsiifilsemaks muutumist ja peentuunimist (ingl fine-tuning), lubades sel viisil komplekssete organite teket[79] ning lõppkokkuvõttes ehk ka kompleksset elu.[80] Tõepoolest, järsud morfoloogiliste uuenduste plahvatused on üldjuhul seotud suurte koguste miRNA-de akumulatsiooniga.[78][79]

mikroRNA-d pärinevad predominantselt juhuslike juuksenõel-struktuuride moodustumise tõttu mittekodeerivas DNA-s (intronid või intergeensed piirkonnad), aga ka juba olemasolevate mikroRNA-de duplikatsioonide ja modifikatsioonide käigus.[81] Evolutsioneerumise aste (ingl rate of evolutionevolutsioonilises mõttes hiljuti tekkinud miRNA-des on võrreldav mujal mittekodeerivas DNAs esinevate miRNA-dega, vihjates neutraalse triivi kaudu toimunud evolutsioonile. Vanematel miRNA-del on palju madalam järjestuste muutumisaste (sageli vähem kui üks asendus saja miljoni aasta kohta),[80] viidates, et kui miRNA omandab mingi funktsiooni, satub ta äärmusliku puhastava valiku alla.[81] Sellesse punkti jõudnuna läheb miRNA üliharva looma genoomist kaotsi,[80] kuigi hiljutisest ajast (mõeldud on evolutsioonilist aega) pärinevad miRNA-d (värskelt tekkinud), mis on seega ilmselt mittefunktsionaalsed, lähevad pidevalt kaotsi.[81] See muudab nad väärtuslikeks fülogeneetilisteks markeriteks ning neid vaadatakse kui võimalikke lahendusi väljapaistvatele fülogeneetilistele probleemidele, näiteks antropoodide omavahelised suhted.[82]

mikroRNA-d esinevad enamiku eukarüootsete organismide genoomides, pruunvetikatest[83] loomadeni. Kõikides liikides kokku on 2010. aasta märtsi seisuga identifitseeritud üle 5000 miRNA.[84] Kuigi bakterites esinevad võrreldava funktsiooniga lühikesed (50 – sadu aluspaare) RNA järjestused, puuduvad neis siiski tõelised miRNA-d.[85]

miRNA-de eksperimentaalne avastamine ja manipulatisoonRedigeeri

miRNA-de ekspressiooni võib loendada kaheetapilises polümeraasi ahelreaktsiooni (RT-PCR; ingl real-time polymerase chain reaction) protsessis, millest esimene on modifitseeritud RT-PCR, sellele järgneb kvantitatiivne reaalaja PCR. Selle meetodi variatsioonid võimaldavad leida miRNA-de absoluutse või suhtelise hulga.[86]

miRNA-sid saab hübridiseerida mikrokiipidele (ingl microarray), mis on plaadid või kiibid kaevukestega sadade või tuhandete miRNA märklaudadega, nii et miRNA-de suhtelisi tasemeid erinevates proovides saab kindlaks määrata.[87] mikroRNA-sid saab avastada ja profileerida suure läbilaskvusega sekveneerimismeetoditega.[88] miRNA aktiivsust saab eksperimentaalselt inhibeerida lukustatud nukleiinhappe (LNA- ingl locked nucleic acid) oligo, Morpholino oligo[89][90] või 2`-O-metüül-RNA oligo järjestusega.[91] Lisaks võib spetsiifilist miRNA-d vaigistada komplementaarse antagomir järjestusega (lühike sünteetiline märklaud-miRNAle komplementaarne järjestus). miRNA küpsemist võivad mitmetes punktides inhibeerida steric-blocking oligojärjestused.[92] Nende oligojärjestustega saab blokeerida ka mRNA transkripti miRNA märklaudjärjestust.[93][94] LNA on miRNA-de “in situ” detektsiooniks praegu ainus efektiivne meetod.[95] LNA lukustatud konformatsioon põhjustab suurenenud hübridisatsiooniomadusi ning vähendab tundlikkust ja selektiivsust, tehes selle ideaalseks lühikeste miRNA-de tuvastamiseks.[96]

miRNA-d ja haigusedRedigeeri

Just nagu miRNA-d on seotud eukarüootse raku normaalse funktsioneerimisega, on miRNA-de düsregulatsiooni seostatud haigustega. Käsitsi hallatud avalikus andmebaasis miR2Disease dokumenteeritakse teadaolevad suhted miRNA-de düsregulatsiooni ja inimese haiguste vahel.[97]

miRNA-d ja pärilikud haigusedRedigeeri

Mutatsioon miR-96 alusjärjestuses (ingl seed region) põhjustab pärilikku progressiivset kuulmiskaotust.[98] Mutatsiooni miR-184 seemnejärjestuses tagajärjeks on pärilik keratokoonus (kreeka kerato 'sarv, sarvkest'; konos 'koonus') koos eesmise polaarse kataraktiga.[99] miR-17 ~92 klastri deletsioon põhjustab skeleti ja kasvu defekte.[100]

miRNA-d ja vähkRedigeeri

Mitme miRNA puhul on leitud seoseid mitmesuguste vähitüüpidega.[101][102] miRNA-21 oli üks esimesi mikroRNA-sid, mis identifitseeriti kui onkomiR. Katse hiirtega, keda oli muudetud tootma ülehulgas c-Myc-d, näitas, et miRNA-del on roll vähi arengus. c-Myc on muteerunud vormidega valk, mis on seotud mitmete kasvajatüüpidega. Hiirtel, kes olid kavandatud produtseerima liiga palju erinevaid lümfis leiduvaid miRNA-sid, arenes haigus 50 päeva jooksul ning nad surid kaks nädalat hiljem. Võrdluseks, hiired ilma miRNA-de liigsete kogustega elasid üle saja päeva.[101]

Leukeemiat võib põhjustada viiruse genoomi insertsioon miRNA-de rea 17–92 kõrvale, viies selle miRNA suurenenud ekspressioonini.[103] Ühes teises uurimuses näidati, et kaks miRNA-de tüüpi inhibeerivad E2F1 valku, mis reguleerib raku proliferatsiooni. Antud juhul järeldub, et miRNA seostub mRNA-ga enne, kui sellest jõuavad translatsiooni teel tekkida valgud, mis lülitavad geene sisse ja välja.[104]

Mõõtes 217-ne miRNA-sid kodeeriva geeni aktiivsust, leiti, et on võimalik tuvastada geenimustreid, mis on erinevat tüüpi vähkide puhul erinevad (mingi kindel muster on iseloomulik mingile vähitüübile). miRNA-de signatuurid annavad võimaluse vähi klassifikatsiooni loomiseks. See võimaldab arstidel kindlaks teha koe, kust vähk on alguse saanud, ning määrata ravi mis põhineb algsel koetüübil. miRNA-de profileerimine on juba praegu võimaldanud kindlaks teha, kas patsientidel kroonilise lümfotsütaarse leukeemiaga (KLL) on vähi aeglane või agressiivne vorm.[105]

Teatud miRNA-sid ala- või üleekspresseerivate hiirte uurimine on lubanud pilgu heita väikeste RNA-de rollile mitmesugustes pahaloomulistes kasvajates.[106]

Kliinilistel katsetustel on praegu uudne miRNA-de profileerimisel põhinev sõeluuring varases staadiumis oleva kolorektaalse vähi (käärsooles (ladina colon) või pärasooles (ladina rectum)) tuvastamiseks. Esimesed tulemused on näidanud, et varase eemaldatava (II staadiumi) kolorektaalse vähiga patsientide vereplasma proove on võimalik eristada samasooliste ja -vanuseliste tervete vabatahtlike proovidest. Piisava selektiivsuse ja spetsiifilisuse on võimalik saavutada kasutades väikeseid (alla 1 ml) vereproove. Sellel testil on potentsiaal saada tasuvaks mitteinvasiivseks mooduseks identifitseerida riskirühma kuuluvaid patsiente, kes muidu peaksid läbima kolonoskoopia protseduuri.[107][108]

Teiseks miRNA-de kasutusalaks vähi puhul on nende ekspressioonitasemete kasutamine prognostikaks, näiteks uurimuses NSCLC (mitteväikerakuline kopsukartsinoom) (ingl non-small-cell lung carcinoma) proovidest leiti, et madalad miR-324a tasemed võivad olla prognostiliseks indikaatoriks kehva elumuse jaoks;[109] teine uurimus näitas, et kas kõrged miR-185 või madalad miR-133b tasemed korreleeruvad metastaasi ja madala elumusega kolorektaalse vähi puhul.[110]

miRNA-d ja südamehaigusedRedigeeri

Varem on miRNA-de rolli südames käsitletud kui konditsionaalset miRNA maturatsiooni pärssimist hiire puhul, ning on selgunud, et miRNA-d tõepoolest mängivad südame arengus olulist rolli.[111][112] miRNA-de ekspressiooni profileerimise uuringud demonstreerivad, et spetsiifiliste miRNA-de avaldumistasemed inimeses muutuvad südame haigestumise korral, viidates nende seotusele kardiomüopaatiale.[113][114][115] Veelgi enam, spetsiifilised uuringud loommudelite peal on tuvastanud miRNA-de selgelt eristuvad rollid südame arengu jooksul ning patoloogiliste tingimuste korral, hõlmates kardiogeneesi võtmekomponentide regulatsiooni, hüpertroofilise kasvu (hüpertroofia – elundi või koe mahu suurenemine) vastust ja südame juhtivust.[112][116][117][118][119]

miRNA-d ja närvisüsteemRedigeeri

miRNA-d paistavad reguleerivat ka närvisüsteemi.[120] Neuraalsed miRNA-d osalevad mitmesugustes sünaptilise arengu etappides, kaasa arvatud dendriitide geneesis (hõlmab miR-132, miR-134 ja miR-124), sünapsi moodustumises ja küpsemises (miR-134 ja miR-138 arvatakse olevat seotud).[121] Mõned uurimused on leidnud skisofreenia korral muutunud miRNA-de ekspressiooni.[122][123]

miRNA-d ja mittekodeerivad RNA-dRedigeeri

Kui inimese genoomi projekti raames kaardistati esimene kromosoom 1999. aastal, ennustati, et inimese genoom sisaldab üle saja tuhande valku kodeeriva geeni. Vaatamata sellele oli 2004. aastaks viimaks identifitseeritud ainult 20 000 geeni ringis (International Human Genome Sequencing Consortium poolt).[124] Alates sellest ajast on kombineeritud bioinformaatika lähenemisi genoomi mosaiiksuse uuringutega, mis vaatlevad transkriptoomi,[125] süstemaatilise täispikkuses cDNA raamatukogude cDNA järjestamise[126] ja eksperimentaalse hindamisega[127] (hõlmates miRNA-de tuletatud antisense oligonukleotiidide ehk antagomiride loomist). Selline meetod on paljastanud, et paljud transkriptid on valku mittekodeerivad RNA-d, sisaldades ka mitmesuguseid snoRNA-sid ja miRNA-sid.