Otsing sellest blogist

UUS!!!

Protoplast

Protoplast  on  rakuseinaga  raku "elus osa". See hõlmab  rakutuuma  ja  protoplasmat . Sellesse ei kuulu muu hulgas  rakukest ,  ...

neljapäev, 16. jaanuar 2025

Pinotsütoos

Pinotsütoos (ka nn raku joomine) on üks endotsütoosi tüüpidest, kus väikesed osakesed (partiklid), mis on lahustunud vesiikulites, tuuakse rakumembraani sopistumisel raku tsütoplasmasse. Seal need tavaliselt lagundatakse lüsosoomides.

Pinotsütoos skemaatiliselt

Pinotsütoosi omapära seisneb selles, et sel viisil ühineb vesiikul rakuga ilma rakumemembraani läbimata. Pinotsütoosi realiseerumiseks vajab rakk ATP-d (adenosiintrifosfaat).

kolmapäev, 15. jaanuar 2025

Endotsütoos

Endotsütoos on väliskeskkonnast transportvesiikulite abil makromolekulaarsete komponentide omastamine. Makromolekulid seonduvad membraani või retseptoriga ja see põhjustab plasmamembraanist koosneva vesiikuli moodustumise ehk endosoomi, mis tagab transporditavate ainete jõudmise rakku. Makromolekulaarsed ained ei läbi passiivselt hüdrofoobset plasmamembraani ning peavad seetõttu kasutama endotsütoosi. Mõiste võttis kasutusele 1963. aastal Christian de Duve. Endotsütoosile vastupidine protsess on eksotsütoos.

Endotsütoosi tüübid

Fagotsütoos

Fagotsütoos esineb rakkudes, mis on spetsialiseerunud suuremate partiklite ja mikroorganismide fagotsüteerimisele ehk kahjutuks tegemisele. Imetajates on nendeks ühisest eellasest arenenud makrofaagid ehk suur-õgirakud ning neutrofiilid ehk vere valgelibled, mis suuri võõrkehi "alla neelates" moodustavad fagosoomi. Fagosoomiga interakteerudes moodustab lüsosoom fagolüsosoomi. Paljudele ainuraksetele loomadele on fagotsütoos ainus toitumisviis.

Pinotsütoos

Pinotsütoos on lahustunud makromolekulide sissevõtmine väikeste vesiikulite abil. Pinotsütoos jaguneb kolmeks alatüübiks:

  1. Retseptorseoseline selektiivne endotsütoos. Kõigepealt seondub makromolekul rakumembraanis paikneva retseptoriga ning seejärel retseptor-ligandi kompleks assimileeritakse endotsütoosi teel ning moodustub transportvesiikul. Sellel on kaks mehhanismi:
    1. Klatriinisõltuv endotsütoos. Selle mehhanismi puhul on retseptorid kogunenud plasmamembraani teatud piirkonda, mida nimetatakse kaetud lohuks (coated-pit). Kaetud vesiikuli (coated vesicle) moodustumisel osaleb valk dünamiin. Vesiikul kaetakse klatriiniga, et toimuks suunatud liikumine Golgi kompleksi ja endosoomide vahel. Kui vesiikul on ühinenud endosoomiga, siis saadetakse klatriin raku välismembraani tagasi. Seda tüüpi endotsütoosi kasutavad kõik eukarüootsed rakud, et omastada vajalikke toitaineid ja signaalmolekule. Samuti eemaldatakse selle mehhanismi abil väliskeskkonnast potentsiaalselt kahjulikke ühendeid. Näiteks sisenevad rakkudesse madala tihedusega lipoproteiinid (LDL), mis sisaldavad kolesteroolitransferriini jt. ühendeid. LDL retseptori puudumine põhjustab hüperlipideemiat, mis põhjustab kolesterooli kuhjumist organismis ning ateroskleroosi.
    2. Kaveoliinisõltuv endotsütoos. Kaveoliinid on valgud, mis vastutavad, et kaveoolide pealt toimuks seostumine kolesterooliga. Kaveoolid on suhteliselt stabiilsed 50–80 nm laiused raku membraani sissesopistused, mis on retseptoriteks spetsiifilistele molekulidele, näiteks kõrge tihedusega lipoproteiinidele (HDL). Imetajates ekspresseeritakse 3 erinevat kaveoliinivalku.
  2. Kaveoliinist ja klatriinist sõltumatute vesiikulite teke. Järgmised endotsütoosi mehhanismid on kõige vähem kirjeldatud ning nende toimumise mehhanismid on veel paljuski ebaselged:
    1. CLIC/GEEC tüüpi endotsütoos. Kasutatakse CLIC (clathrin-independent carrier) ehk klatriinisõltumatu kandjate ja GEEC (GPI-anchored protein-enriched early endocytic compartment) ehk GPI-ankurdatud valgurikaste varajaste endotsütootiliste kompartmentide osa omavahelist koostööd. Seda tüüpi endotsütoosi vahendab GRAF-1 valk, mille abil sisenevad rakku bakteriaalsed eksotoksiinid, GPI-ga ankurdatud valgud ja muud ühendid.
    2. Flotilliinisõltuv endotsütoos. Flotilliinid moodustavad lipiidsete parvede sarnaseid piirkondi, sest nad asuvad kolesteroolirikastes regioonides. Sellist mehhanismi kasutati ka kaveoliinisõltuva endotsütoosi puhul.
  3. Makropinotsütoos. Põhjustab struktuurseid muutusi raku membraanis, mille tagajärjel moodustuvad väljasopistused, mis on võimelised haarama lahustunud aineid. Lahustunud makromolekulid sisenevad rakku umbes 0,5–5 μm laiusega vesiikulite ehk makropinosoomide abil. Makropinotsütoos on mittespetsiifiline endotsütoos, mille puhul ligandi seondumine retseptorile pole vajalik.
Pildil on põhilised endotsütoosi komponendid ja mehhanismid

Endotsütoosi ja lüsosoomi ühendus

Lüsosoom on membraaniga ümbritsetud hüdrolüütilisi reaktsioone teostav organell ning katalüüsimisele kuuluv aine saadakse endotsütoosi teel moodustunud vesiikulitest. Kõigepealt toimub väliskeskkonnast endotsütoosi teel vesiikuli moodustumine, mis ühineb varajase endosoomiga. Seal eemaldatakse spetsiifilised retseptorid, mis transporditakse tagasi plasmamembraani koostisse. Varajased endosoomid muutuvad aja möödudes hilisteks endosoomideks, kuhu transporditakse trans-Golgi kompleksist ka happelisi hüdrolüüse. Viimati nimetatud transpordiks on vajalik mannoos-6-fosfaat retseptor, mis eemaldub hilises endosoomis ning liigub hiljem tagasi Golgi kompleksi. Hilised endosoomid muutuvad lüsosoomideks, kus algab ainete degradeerimine ehk lahustumine. Endosoomide küpsemisel mängib rolli pH langus ehk hapestumine, mida reguleerivad ATP-sõltuvad prootonpumbad ja ioonkanalid. Varajastes endosoomides on pH umbes 6,2 ning hilistes endosoomides on pH umbes 5,5.

Eksotsütoos

Eksotsütoos on transportvesiikulite abil sisekeskkonnast makromolekulaarsete komponentide omastamine ning nende ühinemine raku välismembraaniga.

Eksotsütoosi rajad

  1. Pidev ehk konstitutiivne tee. Transpordivesiikulid kannavad pidevalt membraanikomponente Golgi kompleksist välismembraani, kus toimub mittevajalike valkude eksotsüteerimine rakust välja. Eksotsütoosi teel toimub pidev plasmamembraani uuenemine.
  2. Reguleeritud tee. Vajalikud on signaaljärjestused, mis määravad valkude jõudmise trans-Golgist sekretoorsetesse vesiikulitesse. Sekreteeritavad ained kogutakse sekretoorsetesse vesiikulitesse ning need ühinevad välismembraaniga pärast keskkonnast tulevat signaali, milleks võib olla hormoon või neurotransmitter. Signaali äratundmise tagajärjel tõuseb kaltsiumioonide kontsentratsioon ning seejärel aktiveerub reguleeritud eksotsütoos. Selline rada esineb neis rakkudes, mis on spetsialiseerunud oma toodangu kiirele eritamisele.

Mõned näited reguleeritud endotsütoosist:

  • Rakkudevahelise suhtluse tagab eksotsütoos, mis on oluline immuunsüsteemis olevatele T-rakkudele. T-rakud ehk tappurrakud on võimelised identifitseerima organismile võõraid objekte, näiteks viirusi. T-rakud eritavad tsütokiine, mis aktiveerivad omakorda teisi tappurrakke ning takistavad rakus viiruste paljunemist raku apoptoosiga ehk raku programmeeritud surmaga. T-rakud liiguvad nakatunud rakule väga lähedale ning signaali toimel vabaneb T-rakkudest perforiinproteiin, mis kaltsiumioonide toimel kinnitub sihtraku plasmamembraanile. Selle tulemusena läheb rakk apoptoosi.
  • Neuron ehk närvirakk on kohastunud närviimpulsside edasikandmiseks. Teiste rakkudega on ta ühenduses signaalainete kaudu. Neuroni aksoni terminaalis olevatest sünaptilistest vesiikulitest sekreteeritakse neurotransmittereid, mis kannavad närviimpulsi edasi postsünaptilisele rakule.

Endotsütoosi ja eksotsütoosi tasakaal

Raku ruumala ja pindala on konstantsed ehk püsivad, seega endotsütoosi ja eksotsütoosi omavaheline tasakaal peab olema stabiilne, et tagada võimalikult püsiv rakusisene keskkond. Iga vesiikul on määratud ühinema ainult kindla membraaniga. Tulemuseks on makromolekulide suunatud liikumine raku sise- ja väliskeskkonna vahel. Transportvesiikulite teket katalüüsivad spetsiifilised kattevalgud. Katetena kasutatakse sihtkoha-spetsiifilisi valke:

  • Klatriin. Klatriiniga kaetud vesiikulid liiguvad plasmamembraani ja endosoomide vahel, samuti trans-Golgi retiikulumi ja endosoomide vahel. See mehhanism ei vaja ATP-d.
  • COP valgud. Nende moodustatud katte tekkeks on vaja lisaenergiat, mis saadakse ATP hüdrolüüsi käigus. Sõltuvalt sihtmembraanist jaotatakse COP valgud järgnevalt kaheks:
    • COP I – transpordib vesiikuleid cis-Golgi kompleksist endoplasmaatilisse retiikulumi.
    • COP II – transpordib vesiikuleid endoplasmaatilisest retiikulumist cis-Golgi kompleksi.

Et transportvesiikulid tunneksid ära õige sihtmembraani, osalevad protsessis SNARE-valgud. SNARE-valgud on transmembraansed valgud, mis jagunevad vastavalt kaheks, kas valk asub vesiikulil (vSNARE) või sihtmembraanil (tSNARE). Vesiikuli ühinemine sihtmembraaniga ei toimu iseeneslikult, vajalikud on Rab perekonna GTP siduvad valgud

teisipäev, 14. jaanuar 2025

Makrofaagid

Makrofaagid (lad macrophagusmacrophagocytus, kr makros suur + kr phagein sööma + kr kytos rakk) on paljude selgroogsete loomade kehas, erinevates kudedes, elunevad suured õgirakud.

Makrofaagid pärinevad luuüdi tüvirakkudestVeres ringlevaid makrofaage nimetatakse ka valgeteks vererakkudeks, mis tekivad monotsüütide diferentseerumisel. Makrofaagid on võimelised veresoontest väljuma ja sisenema patogeenide atakeerimiseks kudede rakkudevahelisse ruumi.

Makrofaagide ülesanded pole seni veel päris selged; arvatakse, et nad kõrvaldavad paranevatest kudedest surnud rakkude jäänuseid, mikroobe, kasvajarakke ja stimuleerivad lümfoid(-immuun)süsteemi rakke atakeerimaks patogeene.

Adelaide'i Ülikoolis tehtud uuring näitas, et makrofaagid on vastutavad hormoon progesterooni, mida peetakse oluliseks raseduse hormooniks, tootmise eest.

Roomajatel

Maolistel

Madude makrofaage on vähe uuritud, kuid arvatakse, et morfoloogiliselt sarnanevad nad teiste selgroogsete loomade makrofaagidega. Maksaspõrnasneerudes ja kroonilistes põletikukolletes on neil (sarnaselt kalade ja kahepaiksetega) tuvastatud melanomacrophages.

Imetajatel

Imetajatel on makrofaagid sünnijärgselt kõikides kudedes.

Inimestel

Koemakrofaagid

Makrofaagid paiknevad organismis eri kudedes ja eri kogustes, nii näiteks paiknevad peaajus mikrogliia rakud, mis moodustavad ligi 15% peaaju rakkude populatsioonist.

Funktsioonidest lähtuvalt kannavad koemakrofaagid erinevaid nimetusi.

Raku nimetusElundi, koe nimetus
Alveolaarmakrofaagidkopsualveoolide vaheseintes ja alveoolides
Rasvkoe makrofaagidrasvkude
Histiotsüütsidekude
Kupfferi rakkmaks
Mikrogliiapeaaju närvikude
Epiteelirakusarnane sidekoerakkgranuloom
Luud hävitav rakkluu
Hofbauer cellemakook
Urgesoon(kapillaar)te katterakudpõrn
Gigantrakud ingl k Giant cellsConnective tissue
Kõhukelme makrofaagidkõhukelmeõõs


Makrofaagid on olulised organismi lümfisüsteemi töös ning rakulise immuunsuse tagamisel. Nad osalevad fagotsütoosis (lagundavad võõraineid), põletikureaktsioonis, kasvajarakkude fagotsütoosis ja immuunsuse kujunemises mõjutades ning stimuleerides teisi lümfisüsteemi rakke, nt lümfotsüüte.

Makrofaagid kasvajarakku õgimas

Makrofaage ringleb hulgaliselt lümfoidkudedes, näiteks lümfisõlmedesHumoraalse immuunsüsteemi sekretsiooni tulemusel moodustub antikeha ja antigeeni ühinemisel kompleks, mis haaratakse ja hävitatakse makrofaagide poolt.

Mõned bakterid, näiteks tuberkuloosi mükobakter, on makrofaagide toimele resistentsed.

Makrofaagide eritised

Eri kudedes paiknevad makrofaagid on võimelised erinevaid patogeenidele toksiinina toimivaid molekule ja eritisi komplekteerima ja eritama. 

Makrofaagid eritavad rohkem kui 50 bioloogiliselt aktiivset ainet, näiteks valkelipiide, hapniku metoboliite, ensüüme, ensüümi inhibiitoreid jpt. Munandites paiknev makrofaagide populatsioon eritab ainet, mis stimuleerib Leydigi rakke, et need eritaksid testosterooni.

Patoanatoomia

Ateroskleroos ehk luude hõrenemine

Aterosklerootiliste naastude iseloomulikuks tunnuseks on proinflammatoorsete tsütokiinide TNF-α ja IL-6 eritamine makrofaagide poolt.

Leepra

Leepra mükobakterleepra põhjustaja, seondub peremeesrakkude pinnal olevate retseptoritega ja ta fagotsüteeritakse raku poolt, edasi paljuneb bakter makrofaagide sees.

Omandatud immuunpuudulikkuse sündroom

Arvatakse, et makrofaagidel on oluline roll ka inimese immuunpuudulikkuse viiruse reservuaarina.

Põletikulised haigused

Makrofaage seostatakse (on tuvastatud) mitmete põletikuga kulgevate haiguslike seisunditega, nagu insuliiniresistentsus, kasvajad jpt.

Reumotoidartriit

Makrofaagidel on oluline roll reumatoidartriidi patogeneesis.

Tuberkuloos

Arvatakse, et tuberkuloosi mükobakter, mis põhjustab tuberkuloosi, suudab vältida makrofaagide toksilisi sekretsioone ja kasutab makrofaage paljunemiskeskustena.

Tulareemia

Arvatakse, et bakteri Francisella tularensis poolt põhjustatud tulareemia korral, mõjutavad bakterid makrofaagide surma nii, et selle kaudu kanduksid võimalikult paljud baktereid organismi laiali.

Ajaloolist

Makrofaagid avastas 1884. aastal Venemaa bioloog Ilja Iljitš Metšnikov.

esmaspäev, 13. jaanuar 2025

Fagotsütoos ja Fagotsüüt

Fagotsütoos on õgirakkude (fagotsüütide) toimimine organismi kaitsjana. Fagotsütoos üks kahest endotsütoosi tüübist (teine on pinotsütoos), kus rakk "imeb" membraani sisse võrreldes pinotsütoosiga suhteliselt suuremaid partikleid (näiteks baktereid).

Organismi seisukohalt võib fagotsütoos olla kaitsereaktsioon, mille puhul fagotsüüdid ehk õgirakud kapseldavad endasse kehavõõraid osakesi (milleks võib olla bakterviirus või kahjustatud kude) ja hävitavad need lagundamise teel.

Mõned pisielurid (näiteks algloomad) toituvad fagotsütoosi teel.

Fagotsüüt ehk õgirakk on loomorganismi rakk, mis lagundab fagotsütoosi teel sinna sattunud võõrkehi (nt baktereid) ja apoptoosi läbinud raku osakesi. Seega mängivad fagotsüüdid olulist rolli hulkraksete organismide immuunsüsteemi talitluses.

Teatud suuri õgirakke nimetatakse makrofaagideks.

reede, 10. jaanuar 2025

Golgi kompleks

Golgi kompleks

Golgi kompleks (GK), ka Golgi keha ja Golgi aparaat, on enamikus eukarüootsetes rakkudes leiduv, tsütoplasmavõrgustikuga seotud rakuorganell.

Golgi kompleksi avastas 1897. aastal Itaalia teadlane Camillo Golgi, kelle järgi see ka nimetati. Golgi kompleksis toimub valkude ja lipiidide töötlemine, spetsiaalsetesse vesiikulitesse pakkimine ning seejärel lõplikesse sihtkohtadesse saatmine.

Inimese leukotsüüdi Golgi kompleks vaadelduna mikroskoobiga. Pildil on näha poolringikujuliste mustade ringide kogum ja mitmed ümmargused vesiikulid
Camillo Golgi (1843–1926)

Avastamine

Next.svg Üsna suurte mõõtmete tõttu oli Golgi kompleks üks esimesi avastatud ja detailselt uuritud organelle. See avastati 1897. aastal, kui uuriti närvirakkude (täpsemalt Purkinje rakkude) ehitust, Camillo Golgi (1843–1926) poolt, kelle järgi sai see ka nimetuse. Ta kasutas selleks enda väljatöötatud histoloogilist värvimist (nn must reaktsioon, mis põhineb raskmetallidega värvimisel) ning kirjeldas rakkudes korvitaolist moodustist, mis paikneb tuuma ümbruses. Ta avaldas 1898. aastal oma töö, kus ta nimetas seda struktuuri apparato reticolare interno'ks ehk sisemiseks retikulaarseks aparaadiks.[1] Hiljem hakati selle asemel kasutama terminit "Golgi kompleks". Camillo Golgi avastust peeti esialgu tema uudsest uurimismeetodist tulenevaks optiliseks illusiooniks. Kaasaegsete mikroskoopide leiutamisega 20. sajandil sai kinnitust ka Golgi kompleksi olemasolu.


Struktuur

Golgi kompleks on membraanidest ja kanalitest moodustunud lamedate põiekeste või tsisternide kogum, mida ümbritsevad membraaniga kaetud vesiikulid. Taimedes leiduvat Golgi tsisternidekuhja nimetatakse vahel diktüosoomiks. Imetajaraku Golgi kompleks koosneb tavaliselt 40–100 tsisternide kuhjast ning üks kuhi koosneb enamasti 4–8 hantlikujulisest tsisternist. Erinevalt endoplasmaatilisest retiikulumist (ER) ei ole Golgi kompleksi membraanid omavahel ühendatud. Iga tsistern sisaldab spetsiaalseid Golgi ensüüme, mis modifitseerivad GK-d läbivaid valke.

Golgi kompleksis eristatakse kolme funktsionaalset piirkonda: cis-, kesk- ja trans-Golgi. Nii cis- kui ka trans- külg on tihedalt seotud struktuuridega, mida nimetatakse vastavalt cis- ja trans-Golgi võrgustikuks.

  • Cis-Golgi võrgustik (CGN) on kõige tuumapoolsem. Tema ülesandeks on võtta vastu ER-ist tulevaid sünteesitud valke.
  • Trans-Golgi võrgustik (TGN) on rakumembraanipoolne piirkond. Temast punguvad välja erineva koostisega membraanidega kaetud vesiikulid.

Golgi kompleksi ümbritseb tsütoplasmapoolsest küljest Golgi maatriks, mis isoleerib GK membraane ning on oluline struktuuri hoidmises ja vesiikulite liikumises. Arvatakse, et maatriksi ülesandeks on hoolitseda GK kasvu, jagunemise ja võrdse jaotamise eest tütarrakkudesse mitoosis.

Vesiikulite tüübid

  1. Klatriiniga kaetud vesiikulid;
  2. COP (coat proteins) valgulise kestaga vesiikulid − jaguneb COP I ja COP II.
ER (oranž) ja Golgi kompleks (roosa). 1. Tuumamembraan; 2. Tuumapoor; 3. Karedapinnaline ER (RER); 4. Siledapinnaline ER (SER); 5. Ribosoom RER-il; 6. Makromolekulid; 7. Transportvesiikulid; 8. Golgi kompleks; 9. Cis-Golgi; 10. Trans-Golgi; 11. Golgi kompleksi tsisternid

Funktsioon

Rakud sünteesivad suurel hulgal erinevaid makromolekule. GK ülesandeks on karedapinnalisest ER-ist saabuvate valkude modifitseerimine (glükosüleerimine ja fosforüleerimine), sortimine ja pakkimine. Kui GK on oma töö lõpetanud, liiguvad vesiikulitesse pakitud valgud rakust välja, jäävad rakuseina koostisse või asuvad funktsioneerima raku sees. Golgi kompleks on seotud ka raku ümber paiknevate lipiidide transpordi ja lüsosoomide moodustamisega. Piltlikult öeldes talitleb Golgi kompleks kui postkontor − ta pakib ja märgistab valgud või lipiidid ning saadab siis raku eri osadesse.

Golgi kompleksi iseloomustab eelkõige suure hulga erinevate glükosidaaside ja glükosüültransferaaside olemasolu. Esinevad ka fosfo- ja sulfotransferaasid. Golgi membraanis esinevad spetsiifilised transportsüsteemid, transportimaks tsütoplasmast suhkruid Golgi kompleksi. Eri rakkude Golgi aparaat sisaldab erinevaid ensüüme, samuti erinevad koostiselt cis-, kesk- ja trans- positsioonis olevad tsisternid.

Golgi kompleks on eriti rikkalik sekreteerivates ehk eritusega seotud rakkudes, näiteks soolte epiteelis, mis sekreteerivad glükoproteiinide ja proteoglükaanide segu.

Valkude modifitseerimine

Valkude glükosüleerimine

Valkude glükosüleerimist viivad läbi glükosüültransferaasid. Need on membraanis paiknevad valgud, mille aktiivtsenter on suunatud Golgi valendiku poole. Substraadiks neile ensüümidele on nukleosiid di- või monofosfaatsuhkrud. Glükosüleerimise käigus lisatakse valgumolekulile suhkrujääk. Need suhkrud liidetakse kas juba paigas olevale eelmisele suhkrujäägile (kui on tegemist oligosahhariidse ahela pikendamisega) või aminohappele.

Golgis toimub kahte tüüpi glükosüleerimist:

  • N-seoseline glükosüleerimine – N-seoseliste oligosahhariidahelate pikendamine, mis algas juba ER-is ning viiakse lõpuni GK-s;
  • O-seoseline glükosüleerimine – toimub ainult Golgi kompleksis. Sünteesitakse O-seoselisi suhkruahelaid.

Valkude glükosüleerimine on väga keerukas protsess, teatud valkudel võivad oligosahhariidsed ahelad olla märkimisväärselt pikad. Näiteks ekstratsellulaarses maatriksis leidub nn. proteoglükaane, mille koostises on väga pikad laengut kandvad polüsahhariidid – glükoosaminoglükaanid. Glükosüleerimisel omandavad valgud õige konformatsiooni ehk kuju ning suureneb resistentsus ehk vastupanuvõime proteaaside suhtes. On teada, et lüsosoomide membraanide valgud on tugevalt glükosüleerunud ning on tänu sellele vastupidavad proteaaside suhtes – need ei saa hüdrolüüsida lüsosoomide membraanide koostises paiknevaid valke. Samuti tagab glükosüleerimine valkude liikumise erinevatesse organellidesse.

Valkude fosforüleerimine

Fosforüülimisega tegelevad fosfotransferaasid. Kõik lüsosoomidesse saadetavad ensüümid peavad saama märgistatud N-atsetüülglükoosamiini fosfotransferaasi poolt. Märgistuse tagajärjel tekkiv mannoos-6-fosfaat grupp on spetsiifiliseks sorteerimis-signaaliks, et saata valk lüsosoomi. Kui mingil põhjusel seda gruppi Golgi kompleksis lüsosoomidesse määratud ensüümidele külge ei panda, siis vastavad ensüümid lüsosoomidesse ei jõua ning nad eksotsüteeritakse ehk väljutatakse rakust.

Valkude sulfaatimine

Osa valkude suhkruahelad sulfaaditakse Golgi kompleksis. Selle eest vastutavad sulfotransferaasid. Sulfaatgrupi liitmine annab valkudele suure negatiivse laengu. Paljude sulfaatgruppide olemasolu on iseloomulik eespool nimetatud proteoglükaanidele. Paljud proteoglükaanid sekreteeritakse rakust ja nad osalevad rakuvälise maatriksi moodustamisel. Osa aga jäävad rakumembraani koosseisu.

Vesiikulite transport

Golgi kompleksi sisenevad karedapinnalise ER-i ekspordipiirkonnalt punguvad sekreteeritavat valku sisaldavad põiekesed, mis ühinevad Golgi cis-tsisternide membraaniga. Põiekesed tühjendavad oma sisu GK luumenisse, kus toimub valkude modifitseerimine, sortimine ning pakkimine. Lõpuks on vesiikulitesse pakitud valgud trans-Golgi piirkonnas, kust nad saadetakse lõplikesse sihtkohtadesse.

Vesiikulite transport sõltub nende kesta valkudest

Vesiikulid moodustuvad transporditava valgu signaaljärjestuse ja ER/Golgi membraani retseptorvalkude vastavuse baasil. Osa kesta valkude subühikutest ning adaptervalkudest määravad, millised membraani osad ja millised valgud sisenevad vesiikulisse. Seega kesta valgud – klatriin, COP I, COP II ning adaptervalgud, on vajalikud selleks, et konkreetsesse vesiikulisse lülituksid teatud kindlad valgud. Nad ei ole vajalikud märklaudorganellide äratundmiseks ja nendega seostumiseks. Pärast vesiikuli moodustumist kestavalgud depolümeriseeruvad ja eralduvad.

Vesiikulite tüübid

On kolme tüüpi valgulise kestaga vesiikuleid, mis osalevad valkude transpordil ühest organellist teise:

  1. klatriiniga ümbritsetud vesiikulid – moodustuvad rakumembraanidest endotsütoosi protsessis. GK-lt pungudes liiguvad endosoomidesse;
  2. COP II kaetud vesiikulid – liiguvad karedapinnaliselt ER-ilt Golgi kompleksi;
  3. COP I kestaga vesiikulid – transpordivad valke cis-Golgist tagasi ER-i.

Golgi kompleks ja mitoos

Rakujagunemisel loomarakus valkude transport ja sekreteerimine peatatakse ning Golgi kompleks fragmenteerub väikesteks vesikulaarseteks struktuurideks. Need struktuurid paiknevad hajutatult üle kogu tsütoplasma.

Fragmenteerunud Golgi kompleks jaotub koos tsütoplasmaga tütarrakkudesse, kus nad pärast tsütokineesi taas tavapärase tsisternse GK kuju võtavad.

Mitoosi korral taime- ja pärmirakus jäävad Golgi tsisternid puutumatuks kogu rakutsükli aja. Põhjus pole teada, kuid kuna ei taime- ega pärmirakus proteiinide transporti ER-ist ei blokeerita, võib peituda põhjus selles.

neljapäev, 9. jaanuar 2025

Loomarakk

Loomarakk on eukarüootne loomariiki kuuluva organismi rakk. Loomarakkudel on rida ühiseid omadusi, mille osas nad erinevad taimerakkudest või seenerakkudest.

Loomarakul on fagotsütoosi võime, s.t. võime tuua rakumembraanile sattunud ainete osakesi raku sisemuse kasutamiseks.

Loomarakk ei sisalda plastiide (kloroplastkromoplast

leukoplast), rakukesta ja tsentraalvakuooli (vakuoolid pole üldiselt üldse omased loomarakule).


kolmapäev, 8. jaanuar 2025

Eukarüütne rakk

Eukarüootne rakk ehk päristuumne rakk on üks kahest peamisest elusorganismidel esinevast rakutüübist (teine on prokarüootne rakk).

Eukarüootsetel rakkudel on eristunud rakutuum ja membraansed rakuorganellid (näiteks mitokondrid ja kloroplastid).

Eukarüootsed on taime-, looma-, seene- ja paljude protistide rakud.

teisipäev, 7. jaanuar 2025

Prokarüütne rakk

Prokarüootne rakk ehk eeltuumne rakk on üks kahest peamisest organismidel esinevast rakutüübist (teine on eukarüootne rakk). Prokarüootsetel rakkudel puudub rakutuum ja membraansed organellid. Samuti on nad suuruselt oluliselt väiksemad kui eukarüootsed rakud. Prokarüootsed on bakterite ja arhede rakud.

Prokarüootsete rakkude uurimine sai võimalikuks alles 20. sajandi keskpaigast, sest varem puudus selleks sobiv tehnika.

Prokarüootsete rakkude tunnusjooned

Alati eksisteerivad struktuurid

  • Raku sein ümbritseb rakku ja kaitseb rakku lõhkemise eest. See koosneb süsinikuhüdraadi ja aminohappe segust.
  • Plasma membraan kontrollib materjalide liikumist rakust sisse ja välja. Mõned ained pumbatakse sisse ja välja aktiivse transpordi abil.
  • Tsütoplasma membraani sees sisaldab kõiki ensüüme, mis on vajalikud raku keemiliste reaktsioonide jaoks. See sisaldab ka geneetilist materjali.
  • Kromosoom on rakus tsütoplasmas, nukleoidi regioonis. DNA pole seotud ühegi valguga (DNA prokarüootses rakus on paljas). Bakterid sisaldavad lisaks väikseid DNA ringe, mida nimetatakse plasmiidideks. Viimased paljunevad iseseisvalt ja võivad ühelt rakult teisele üle minna.
  • Ribosoomid leiduvad prokarüootsetes rakkudes, kus nad sünteesivad valke. Neid esineb suurel hulgal rakkudes, mis aktiivselt toodavad valke.

esmaspäev, 6. jaanuar 2025

Rakutsükkel

Rakutsükkel ehk raku jagunemistsükkel on raku elukäik pooldumisest pooldumiseni.

Rakutsükli skeem. Välimine ring: I – interfaas, M – mitoos; sisemine ring: M – mitoos, G1 – G1-faas, G2 – G2-faas, S – süntees; ringist väljaspool: G0 – puhkefaas

Rakutsükkel koosneb reast sündmustest, mis viivad raku jagunemise ja kahekordistumiseni.

Rakutuuma omavate ehk eukarüootsete rakkude rakutsükkel jaotatakse kolmeks osaks:

  • interfaas – toimub raku kasvamine, mitoosiks vajalike toitainete kogumine ja DNA kahekordistamine;
  • mitoos – tulemuseks on raku jagunemine kaheks erinevaks rakuks, mida kutsutakse tütarrakkudeks;
  • tsütokinees – toimub raku lõplik jagunemine.

Rakkude jagunemine toimub hulkraksetel organismidel kasvuperioodil. Kogu elu vältel toimub mitmete kehakomponentide – näiteks karvadenahavererakkude ja mõnede siseelundite – kudede uuenemine rakkude pooldumise teel.

Rakutsükli faasid

Rakutsükkel koosneb neljast eristatavast faasist: G1-faas, S-faas (süntees), G2-faas (need kolm kokku moodustavad interfaasi) ja M-faas (mitoos). M-faas ise koosneb kahest omavahel tihedalt ühendatud protsessist: mitoosist, kus jaotatakse raku kromosoomid kahe tütarraku vahel, ning tsütokineesist, kus jaotatakse raku tsütoplasma kaheks ja moodustub kaks eraldi rakku.

Ükski faas ei käivitu enne, kui eelmine on täielikult lõpuni viidud. Rakud, mis ajutiselt või pöörduvalt on lõpetanud jagunemise, on puhkefaasis, mida nimetatakse G0-faasiks.

Pärast raku jagunemist alustab iga tütarrakk uue rakutsükliga. Kuigi interfaasi erinevad staadiumid ei ole tavaliselt morfoloogiliselt eristatavad, on igal faasil eriliselt spetsialiseerunud biokeemilised protsessid, mis valmistavad rakku ette jagunemise alguseks.

Puhkefaas (G0-faas)

Hulkraksetes organismides väljuvad enamik diferentseerunud rakke rakutsüklist, jäädes G0-faasi pikaks ajaks või mõnel juhul kogu eluks (närvirakudsilma läätse rakud). Kui rakutsüklisse uuestisisenemist enam kunagi ei toimu, nimetatakse neid rakke postmitootilisteks rakkudeks. Teatud kasvufaktorite mõjul võib aga osa G0-faasis olevatest rakkudest liikuda tagasi rakutsüklisse, sisenedes S-faasi.

Ka DNA kahjustus või DNA lagundamine võivad olla raku püsivalt G0-faasi jäämise põhjuseks, sel juhul on see biokeemiline alternatiiv raku apoptoosi suunamisele. Kui rakutsüklit DNA kahjustuste puhul ei peatata, võib see põhjustada vähki.

Interfaas

Enne, kui rakk saab hakata jagunema, on tal vaja koguda toitaineid. Kõik ettevalmistused jagunemiseks tehakse interfaasi kolme alafaasi (G1, S, ja G2) jooksul. Kuna raku jagunemine toimub tsükliliselt, eelneb interfaasile eelmise rakutsükli mitoos ja tsütokinees. Interfaas on ka tuntud kui ettevalmistav faas, tuuma jagunemist seal ei toimu.

G1-faas

Esimest interfaasi alafaasi M-faasi lõpust kuni S-faasi alguseni kutsutakse G1-faasiks (G viitab ingliskeelsele sõnale gap, mis tähendab tühimikku, lünka). G1 kutsutakse ka kasvufaasiks, kuna selle faasi jooksul raku biosünteetiline aktiivsus kasvab järsult, eriti võrreldes eelneva M-faasiga. G1-faasis toimub erinevate ensüümide süntees, mida läheb vaja S-faasis. Enamasti on need DNA replikatsiooniks vajalikud valgud. G1 kestus varieerub suuresti isegi sama liigi erinevate rakkude puhul.

S-faas

Järgnev S-faas algab siis, kui algab DNA sünteesimine. Selle faasi lõpuks on kõik kromosoomid kahekordistatud, mis tähendab, et igal kromosoomil on kaks õdekromatiidi. RNA transkriptsiooni ja valgusünteesi tase on väga madal, välja arvatud histoonide tootmine, mis toimubki põhiliselt S-faasis.

G2-faas

G2-faas kestab S-faasi lõpust kuni raku mitoosi sisenemiseni. Taas on näha biosünteesi aktiivsuse kasvu, seekord aga toimub mikrotuubulite tootmine, mis on vajalikud mitoosiprotsessi jaoks. Valgusünteesi inhibeerimine G2-faasis takistab raku enneaegset sisenemist mitoosi.

Mitoos (M-faas)

Iga rakujagunemise jooksul toimub DNA replikatsioon ja mitoos. Iga tsükli tulemuseks on kaks diploidset tütarrakku

Küllaltki lühike, keeruline ja tugevalt reguleeritud mitoosifaas kujutab endast rakutuuma jagunemist. Sündmuste jada on jaotatud erinevateks faasideks, kus üks faas ei alga enne, kui eelmine on lõpuni viidud. Need faasid on järgmised:

Mitoos on protsess, kus eukarüootse raku tuumas asuvad kromosoomide paarid kondenseeruvad ja nende külge kinnituvad kiud, mis tõmbavad õdekromatiidid lahku raku poolustele. Enamasti järgneb sellele kohe tsütokinees, mis jagab kromosoomid, tsütoplasmaorganellid ja rakumembraani võimalikult võrdselt kahe tütarraku vahel. M-faas koosnebki mitoosist ja tsütokineesist, mille koostöö tulemusena jaguneb algne rakk kaheks tütarrakuks, mis on geneetiliselt identsed üksteisele ja ka algsele rakule. M-faas moodustab umbkaudu 10% kogu rakutsüklist.

Kuna tsütokinees toimub enamasti mitoosiga seotult, kasutatakse sõna "mitoos" samatähenduslikult väljendiga "M-faas", kuigi tegelikult on mitmeid rakke, kus mitoos ja tsütokinees toimuvad eraldi. Nii moodustuvad näiteks mitme tuumaga rakud. Seda nähtust on kõige rohkem seente ja limaseente hulgas, kuid on ka täheldatud teistes organismirühmades. Isegi loomades võivad tsütokinees ja meioos toimuda eraldi, näiteks äädikakärbse embrüonaalse arengu teatud etappides.

Mitoos toimub ainult eukarüootsetes rakkudes, kuid varieerub erinevates liikides. Näiteks loomades toimub "avatud" mitoos, kus tuumaümbris laguneb enne kromosoomide lahknemist. Samal ajal seentes, näiteks Aspergillus nidulans ja Saccharomyces cerevisiae (pärm) viiakse läbi "kinnine" mitoos, kus kromosoomide lahknemisel jääb tuumamembraan terveks. Prokarüootsed rakud, kellel tuum puudub, jagunevad pooldumise teel.

Eukarüootse rakutsükli regulatsioon

Vead mitoosis võivad kas surmata raku apoptoosi teel või põhjustada mutatsioone, mis võivad viia vähi tekkeni. Rakutsükli regulatsioon hõlmab hädavajalikke protsesse raku ellujäämiseks, kaasa arvatud pärilikkusmaterjali kahjustuste tuvastamise ja parandamise kontrollimatu raku jagunemise ennetamisena. Molekulaarsed sündmused, mis kontrollivad rakutsüklit, on järjestatud ja suunatud, mis tähendab, et iga protsess ilmneb järjestikuselt ja rakutsüklit on võimatu ümber pöörata.

Tsükliinide ja CDK-de roll

Kaks klassi regulatoorseid võtmemolekule, tsükliinid ja tsükliinisõltuvad kinaasid (inglise keeles CDK – cyclin dependent kinase), määravad ära raku edasijõudmise läbi rakutsükli[5]Leland HartwellTimothy Hunt ja Paul Nurse võitsid 2001. aastal Nobeli auhinna nende tsentraalsete molekulide avastamise eest. Paljud tsükliine ja CDK-sid kodeerivad geenid on kõikide eukarüootide hulgas konserveerunud, kuid üldiselt omavad keerulisemad elusolendid üksikasjalikumaid rakutsükli kontrollsüsteeme, mis sisaldavad individuaalsemaid komponente. Paljud rakutsükli regulatsioonis osalevad geenid identifitseeriti uurides pärme, eriti pärmi Saccharomyces cerevisiae.

Tsükliinid moodustavad aktiveeritud dimeeri regulatoorse alamühiku ja CDK-d katalüütilise alamühiku. Tsükliinidel ei ole katalüütilist aktiivsust ja CDK-d on inaktiivsed, kui neil pole kõrval tsükliini. Kui CDK-d on tsükliini seondumisega aktiveeritud, viivad nad läbi tavapärast biokeemilist reaktsiooni, fosforüleerimist. See aktiveerib või inaktiveerib sihtmärgiks olevaid valke, mis koordineerivad rakutsükli järgmisse faasi liikumist. CDK-sid ekspresseeritakse rakus pidevalt, aga tsükliine sünteesitakse erinevate molekulaarsete signaalide saamisel spetsiifilistes rakutsükli staadiumites.

Kontrollpunktid

Rakutsükli kontrollpunkte kasutatakse rakus selleks, et jälgida ja reguleerida rakutsükli edenemist. Kontrollpunktid ennetavad rakutsükli edasiliikumist, et tagada vajalike faasispetsiifiliste protsesside läbimine ja DNA kahjustuste parandamine. Rakk ei saa edasi liikuda järgmisse faasi enne, kui kontrollpunkti tingimused ei ole täidetud.

Mitmete kontrollpunktide ülesandeks on tagada see, et kahjustatud või mittetäielikku DNAd ei kantaks edasi tütarrakkudesse. Eksisteerib kaks peamist kontrollpunkti: G1/S ja G2/M. G1/S üleminek on tsükli sagedust piirav koht, mis on tuntud ka kui restriktsiooni punkt. Rakutsükli vastusele DNA kahjustuse jaoks on välja toodud ka alternatiivne mudel, mida tuntakse postreplikatsioonilise kontrollpunktina.

Valk p53 mängib olulist rolli nii G1/S kui ka G2/M kontrollpunktide kontrollmehhanismide käivitamisel.

Roll kasvajate moodustamises

Häired rakutsükli komponentide töös võivad viia kasvajate moodustumiseni. Teatud geenide, näiteks rakutsükli inhibiitorite (valk p53 jt) muteerumisel, võib rakk hakata kontrollimatult jagunema ja moodustada kasvaja. Kasvajarakkude rakutsükkel kestab sama kaua kui normaalsetes rakkudes või isegi kauem. Olenemata sellest on aktiivselt jagunevate rakkude hulk kasvajates palju suurem, võrreldes normaalse koega, kus suur hulk rakke on G0-faasis. Seega toimub rakkude hulga otsene kasv, kuna apoptoosi teel surevate või G0-faasi sisenevate rakkude arv jääb samaks.

Vähiteraapia sihtmärgiks ongi pidevalt rakutsüklit läbivad rakud, kuna nende DNA on raku jagunemise jooksul üsnagi katmata (ei ole seotud kaitsvate DNA-ga seotud proteiinidega nagu tavaliselt) ja seega vastuvõtlik ravimite või kiirituse tekitatavatele kahjustustele. Seda fakti kasutataksegi ära vähiteraapias: märkimisväärne osa kasvajast eemaldatakse kirurgiliselt ning vähirakud, mis alles jäävad, liiguvad kohe G0-faasist G1-faasi. Selle põhjuseks on toitainete, hapniku ja kasvufaktorite järsult kättesaadavaks muutumine. Kiirgus või kemoteraapia aga tapab rakud, mis on värskelt rakutsüklisse sisenenud. Rakud on üldiselt kõige kiirgustundlikumad hilistes M– ja G2-faasides ja kõige vastupidavamad hilises S-faasis. Pikema rakutsükli kestusega rakkudes on ka teine vastupidavuse kõrgpunkt, see on hilises G1-faasis.

Kõige kiiremini (9–10 tunniga) rakutsüklit läbivad imetajarakud on sooleepiteeli rakud. Samas tüvirakud hiire nahas võivad jaguneda rohkem kui 200 tunni tagant. Enamik rakutsükli pikkuse erinevustest on põhjustatud G1-faasi kestuse varieeruvusest. M- ja S-faasid nii palju ei varieeru.

reede, 3. jaanuar 2025

Bakteriraku ehitus ja talitus

Sissejuhatus

Elu tekke kohta on erinevaid teooriaid, kuid teadlased on üksmeelel selles, et esimese eluvormina tekkisid üherakulised ilma tuumata organismid. Selliseid eeltuumseid ehk ilma tuumata organisme nimetatakse bakteriteks. Esimesed bakterid elasid üksnes vees, kuid tänapäeval leidub baktereid kõikjal, ka kõige ekstreemsemate elutingimustega paikades. Teadlased on leidnud neid atmosfäärist kilomeetrite kõrgusel maapinnast, maailmamere sügavaimatest paikadest, happelistest kuumaveeallikatest ja radioaktiivsetest jäätmetest. Teadlaste väitel on neil õnnestunud kasvatada baktereid, kes leiti 250 miljoni aasta vanusest soolakristallist. See teeb neist baktereist kõige kauem elanud organismid Maal. Aga mis muudab bakterid nii vastupidavaks ja kohanemisvõimeliseks?

 

Bakteriraku pärilikkusaine

Bakterirakul pole membraaniga ümbritsetud rakutuuma. Bakterites on vähem pärilikkusainet kui päristuumsetes ehk tuumaga rakkudes. Enamikul bakteritest on ainult üks pärilikkusaine DNA molekul. See üks DNA molekul on seotud valkudega, moodustades tihedalt kokkupakitud rõngakujulise kromosoomi. Selles rõngaskromosoomis paikneb raku elutegevuseks ja paljunemiseks vajalik informatsioon (joonis 1.4.5.2.).  

Lisaks suurele rõngaskromosoomile leidub bakterirakkudes ka väikeseid DNA rõngaid, mida nimetatakse plasmiidideks. Need väikesed rõngasmolekulid ei ole rakule tavaolukorras vajalikud, kuid võivad aidata bakteril toime tulla siis, kui keskkonnatingimused väga kiiresti muutuvad. Näiteks võivad need rõngasmolekulid aidata bakteril kahjutuks muuta antibiootikumid. Võime kiiresti kohaneda ja taluda äärmuslikke keskkonnatingimusi oli elu tekkimiseks hädavajalik ning on võimaldanud bakteritel levida pea kõikjale maailmas. 
 

Pilt: Bakteri pärilikkusaine.

Joonis 1.4.5.2. Bakterirakus on üks rõngakujuline DNA molekul, kus paikneb raku elutegevuseks ja paljunemiseks vajalik informatsioon. Lisaks sellele leidub bakterirakkudes väikeseid DNA rõngaid - plasmiide. 

Bakteri rakukest

Bakterirakku ümbritsevad sarnaselt seene- ja taimerakule rakumembraan ja rakukest. Bakteriraku kest on vähem jäik kui taimeraku kest ning võimaldab bakteril kasvada. Bakteritel on rakukesta ümber limakapsel ehk paks kestast eritunud kiht, mis kaitseb bakterit ärakuivamise eest. Osadel bakteritest paiknevad rakukesta peal viburid ja karvakesed, mida viibutades saab bakter liikuda. 

Bakteriraku osad

Bakteriraku ehitus on päristuumsest rakust tunduvalt lihtsam (joonis 1.4.5.3.). Bakterirakus puuduvad päristuumsetele rakkudele iseloomulikud membraaniga ümbritsetud osad. See tähendab, et bakterirakkudes ei ole näiteks ainete tootmiseks ega varuainete säilitamiseks plastiide või energia saamiseks mitokondreid. Selle asemel toimub enamik raku elutegevuseks vajalikke protsesse rakusiseses vedelikus või rakumembraanil. 

Kõigis bakterirakkudes on ribosoomid. Ribosoomid on raku osad, kus toimub valkude tootmine. Bakteriraku ribosoomid on päristuumsete rakkude ribosoomidest väiksemad ja teistsuguse kujuga. 

Pilt: Bakteriraku ehitus.

Joonis 1.4.5.3. Bakteriraku ehitus

Bakteriraku paljunemine

Bakterid paljunevad enamasti pooldumise teel (joonis 1.4.5.4.). See tähendab, et rakk jaguneb kaheks võrdseks osaks. Enne jagunemist kahekordistuvad rakus rõngaskromosoom ja teised rakuosad. Jagunemisel jääb üks rõngaskromosoom kummassegi rakku. Pooldumine võimaldab bakteritel paljuneda väga kiiresti ning sobivate tingimuste olemasolul võib bakterite arv mitmekordistuda minutite või tundide jooksul. 

Pilt: Bakteriraku pooldumine.

Joonis 1.4.5.4. Bakterid paljunevad pooldumise teel.

 

Kokkuvõte

Bakterid on päristuumsetest rakkudest tunduvalt lihtsama ehitusega. Enamikul bakteritest on üks rõngaskromosoom. Bakterirakku ümbritsevad rakukest ja sageli ka limakapsel. Rakukestal võivad olla viburid või karvakesed, mis aitavad bakteril liikuda. Bakteritel puuduvad membraaniga ümbritsetud rakuosad. Kõigis bakterirakkudes on ribosoomid. Bakterirakud paljunevad pooldumise teel.