Otsing sellest blogist

UUS!!!

Paleoproterosoikum

Blogi, mis räägib kõigest, mis on Leonhardile oluline ja/või huvitav. Kommenteerige, tellige, lugege, nautige ja õppige. Paleoproterosoikum ...

kolmapäev, 6. märts 2024

Hüdroloogia

Blogi, mis räägib kõigest, mis on Leonhardile oluline ja/või huvitav. Kommenteerige, tellige, lugege, nautige ja õppige.

Hüdroloogia (vanakreeka sõnadest hydōr 'vesi' ja logos 'mõiste, õpetus') on teadus, mis uurib Maa ja teiste planeetide vee liikumist, jagunemist ja kvaliteeti, kaasa arvatud veeringet, vee ressursse ja keskkonna veevarude haldamist. Teadlast, kes selle teadusharuga tegeleb, nimetatakse hüdroloogiks.

Hüdroloogia jagatakse pinnavee hüdroloogiaks, põhjavee hüdroloogiaks ja merehüdroloogiaks. Hüdroloogia valdkonda kuuluvad ka hüdrometeoroloogiahüdrogeoloogia, valgla ohjamine ja vee kvaliteet – valdkonnad, kus vesi mängib põhilist rolli. Okeanograafia ja meteoroloogia ei kuulu hüdroloogia alla, kuna nendes valdkondades on vesi üks tähtsatest aspektidest, aga mitte ainus.

Ajalugu

Inimesed on teinud püüdeid suunata vee liikumist üle mitme tuhande aasta. Näiteks juba 4000 aastat eKr ehitati Niilusele vesiehitisi, et jõe vett suunates suurendada saagikust ja parandada maa viljakust. Mesopotaamia linnad kaitsesid end üleujutuste eest kõrgete muldvallidega. Vanad kreeklased ja roomlased ehitasid akvedukte ning Vana-Hiinas rajati niisutus- ja üleujutuskaitsevõrke.

Marcus Vitruvius kirjeldas esimesel sajandil eKr veeringeteooriat, kus sademed langevad mägedele ning läbides Maa pinna tekitavad ojad ja allikad. Teaduslikumat lähenemist kasutades kirjeldasid nii Leonardo da Vinci kui ka Bernard Palissy teineteisest sõltumatult tänapäeval tuntud veeringet. Alles 17. sajandil hakati leidma hüdroloogiliste muutujate väärtusi.

Moodsa hüdroloogia rajajad olid Pierre PerraultEdme Mariotte ja Edmond Halley. Mõõtes sademeid, äravoolu ja äravooluala, näitas Perrault, et sademetest piisab Seine’i jõe varustamiseks. Mariotte kasutas vee voolukiiruse ja jõe ristlõike pindala mõõtmeid, et arvutada Seine'i jõe äravool. Halle näitas, et Vahemerest aurustub vesi sinna sissevoolavate jõgede veehulga arvelt.

18. sajandil hüdroloogia arenes, kuna Daniel Bernoulli leiutas piesomeetri, Bernoulli lõi Bernoulli võrrandi ja Henri Pitot omakorda Pitot’ toru. 19. sajandil arenes põhjavee hüdroloogia ning avastati Darcy seadus, loodi Dupuit'-Thiemi kaevuvalem ja Hageni-Poiseuille' kapillaarsuse võrrand.

20. sajandil asendus empiirilisus regionaalsete analüüsidega. Valitsused algatasid hüdroloogilise uurimise programme. Tähtsamateks saavutusteks olid Leroy Shermani hüdrograaf, Robert E. Hortoni maasseimbumise teooria ja Charles Vernon Theisi põhjavee võrrand, mis kirjeldab kaevu hüdraulikat.

Tänu arvutite arengule ja geoinfosüsteemidele on alates 1950. aastatest hüdroloogiale lähenetud teoreetilisemalt kui varem.

Hüdroloogia harud

Seotud valdkonnad

  • Okeanograafia on teadusharu, mis uurib üldisemalt ookeane.
  • Meteoroloogia uurib üldisemalt atmosfääri ja ilma, kaasa arvatud lume- ja vihmasadu.
  • Limnoloogia ehk järveteadus uurib liikuvate, seisvate, looduslike, inimtekkeliste, soolaste ja magedate siseveekogude bioloogilisi, keemilisi, füüsikalisi, geoloogilisi ja muid omadusi.

Väljundid

  • Piirkonna veebilansi määramine
  • Põllumajandusliku veebilansi määramine
  • Ripaalala taastamise projekteerimine
  • Üleujutuste, maalihete ja põudade ennustamine ja ennetamine
  • Reaalajas üleujutuste prognoosimine ja hoiatuste edastamine
  • Põllumaa niisutuse projekteerimine
  • Joogivee varustamine
  • Tammide projekteerimine
  • Sildade projekteerimine
  • Kanalisatsiooni ja äravoolu projekteerimine linnades
  • Geomorfoloogiliste muutuste nagu erosiooni ja settimise ennustamine
  • Veevarude muutuste uurimine
  • Saasteainete transpordiga seotud riskide uurimine

Uurimisalad

Hüdroloogia keskseks teemaks on asjaolu, et vesi liigub läbi Maa erinevaid teid mööda ning erineva kiirusega. Veeringe kõige piltlikum näide on vee aurustumine ookeanist, mille järel tekkinud pilved liiguvad merelt maale ja tekitavad sademeid. Sademete vesi jõuab jõgedesse, järvedesse või põhjavette. Osa veest aurustub ning osa jõuab tagasi ookeani, lõpetades nii ka ühe tsükli. Vesi muudab ühe tsükli käigus mitu korda oma olekut.

Hüdroloogia uurib vee liikumist eri olekutes, vee liikumist ühe oleku kestel või lihtsalt kvantifitseerib vee kogused mingis olekus. Osa hüdroloogiast keskendub otseste mõõtmiste saamisele ning osa modelleerib protsesse, et teha ennustusi ja prognoose.

Põhjavesi

Imbumine

Sademete pinnasesse imbumine on hüdroloogias oluline teema. Mõnel juhul imab kuiv pinnas sademeid halvemini kui märg pinnas. Teatud olukordades on imbumist võimalik mõõta infiltromeetriga.

Pinnavee voolamine

Hüdroloogia uurib pinnavee voolamist ja lahustunud ainete liikumist. Vee liikumist suuremates jõgedes uurivad ka hüdraulika ja hüdrodünaamika.

Üks olulisemaid uurimisobjekte on pinnavee ja põhjavee vastastikune mõju. Tegemist on keeruliste protsessidega ja veehulga liikumine, kas põhjaveest pinnavette või vastupidi, sõltub paljudest sellistest muutujatest nagu põhjavee tase, pinnaveekogu põhja omadused jm.

Aurustumine ja sademed

Aurustumine on oluline veeringe osa. Seda mõjutab osaliselt õhuniiskus, mida on võimalik mõõta näiteks niiskusmõõturiga. Aurustumist mõjutab ka lume, rahe või jää olemasolu.

Sademete hulka on võimalik mõõta eri viisidel: sadeveemõõturi, radari või satelliitidega.

Kaugseire

Hüdroloogiliste protsesside kaugseire pakub eri tüüpi infot, näiteks pilvkatte, maapinna niiskuse või taimkatte kohta. Kaugseiret tehakse nii maapealsete sensorite kui ka satelliitidega.

Vee kvaliteet

Hüdroloogia uurib vees olevaid orgaanilisi ja mitteorgaanilisi ühendeid nii lahustunud kui ka sette kujul. Vee kvaliteeti mõjutab selles lahustunud hapniku reageerimine orgaaniliste ühenditega, aga mõjutavad ka muud keemilised reaktsioonid. Veeproovide võtmine on tihti automatiseeritud ja proovid analüüsitakse proovivõtmise kohas.

Statistiline hüdroloogia

Hüdroloogiliste andmete, nagu sademete hulk või jõe vooluhulk, analüüsimisel on hüdroloogidel võimalik hinnata tulevasi hüdroloogilisi nähtusi. Haruldaste nähtuste prognoosimiseks analüüsitakse nende kordumisperioodi. Veel huvitab hüdrolooge ka näiteks jõgede keskmine vooluhulk aasta või aastaaja kohta.[4]

Nende analüüside põhjal saavad insenerid ja majandusteadlased teha usutavaid riskihinnanguid. Vastavalt nendele on võimalik planeerida taristu arengut ja muid investeeringuid. Statistilist informatsiooni kasutatakse ka suurte tammide käitumiseeskirjade loomisel.

Modelleerimine

Hüdroloogiline mudel on lihtsustatud kujututis veeringi osast. Mudeleid kasutatakse peamiselt ennustuste tegemiseks ja hüdroloogiliste protsesside paremaks mõistmiseks. Eristatakse kaht peamist hüdroloogilist mudelit: andmetel põhinev ja protsessi kirjeldusel põhinev.

  • Andmetel põhinev mudel kasutab n-ö musta kasti metoodikat, kus kasutatakse matemaatilisi ja statistilisi lähenemisi, et leida seos sisendi (näiteks sademete hulk) ja väljundi (näiteks äravool) vahel, proovimata analüüsida protsessi olemust. Näiteks on teada, et niiske pinnas imab vett kiiremini kui täiesti kuiv pinnas.
  • Protsessi kirjeldusel põhinev mudel püüab modelleerida vaadeldud füüsikalisi protsesse. Sellised mudelid sisaldavad tavaliselt andmeid reljeefi, aurustumise, pinnavee voolamise ja teiste parameetrite kohta. Neid nimetatakse deterministlikuteks. Mudelid võivad olla pidevad või siis koostatud mingi kindla ühekordse nähtuse tarvis.

Praegused hüdroloogilised mudelid püüavad hõlmata kogu Maad ning annavad võimaluse paremini mõista hüdroloogiliste süsteemide käitumist.

Organisatsioonid

Rahvusvahelised uurimisasutused

  • Rahvusvaheline veemajandusinstituut (International Water Management Institute) 
  • UNESCO-IHE veeharidusinstituut (UNESCO-IHE Institute for Water Education) 

Teadusajakirjad

teisipäev, 5. märts 2024

Glatsioloogia

Blogi, mis räägib kõigest, mis on Leonhardile oluline ja/või huvitav. Kommenteerige, tellige, lugege, nautige ja õppige.

Glatsioloogia

Mine navigeerimisribaleMine otsikasti
Гляцыялёгія-1959.png

Glatsioloogia on teadus, mis uurib peamiselt liustikke.

Glatsioloogia alla kuulub tegelikult kogu maapinnal oleva jää uurimine, kuid liustikud moodustavad sellest tähtsaima ja uurituima osa, mistõttu nimetatakse glatsioloogiat mõnikord ka liustikuteaduseks. Ei saa märkimata jätta, et glatsioloogial on ka kolmas nimetus – jääteadus.

Glatsioloogiaga tegelevad glatsioloogid. Glatsiolooge ühendab 1936. aastal asutatud Rahvusvaheline Glatsioloogia Ühing.

Tuntud glatsiolooge

esmaspäev, 4. märts 2024

Tulevased teemad ja plaanid

Blogi, mis räägib kõigest, mis on Leonhardile oluline ja/või huvitav. Kommenteerige, tellige, lugege, nautige ja õppige.
Lisaks varasematele teemadele on nüüdseks ära tehtud loodusvööndite, kliimavöötmete ja valitsemisvormide teemad.
Üldiselt blogi algab päevablogiga (2019 jaanuaris), siis tulevad järjest psühholoogia, geograafia, pagari eriala, poliitiline ideoloogia, usuline ideoloogia, paranormaalsus, muusikateooria, muusika ajalugu, kunstiajalugu, loovus, perekonnaõpetuse teemad, majandus, loovus, Eesti ajalugu, maailma ajalugu, ühiskonnaõpetuse teemad, paranormaalsus, lennundus, ajalugu inimeste kaupa, ökoloogia, geneetika, pangandus, valitsemisvormid, kliimavöötmed, loodusvööndid. Ühtlasi ka põhikooli geograafia ja bioloogia. Aga see pole iga kord nii: mõnikord tulevad erineva teema postitused segamini. Ning vahele võib tulla ka täiesti suvalisi teemasid.
Tulevased teemad:
1. Päevablogi
2. Minu arvamused/mõtted
3. Metsandus
4. Kalandus
5. Riietumisnormide ajalugu
6. Ajalugu inimeste kaupa
7. Muu maailma ajalugu
8. Spordialad ja nende ajalugu
9. Fotograafia ajalugu
10. Meditsiin
11. Loodus (Eluta loodus ja Elusloodus: Loomad, taimed, seened, bakterid, viirused, protistid)
12. Jahindus
13. Muud teemad

Lisaks eelnevalt mainitule üritan ma siia lisada veel erinevate ainete põhikooli ja gümnaasiumi materjale. Ning muidugi ka õppematerjale kõikidest muudest koolidest, kus ma midagi olen õppinud.

reede, 1. märts 2024

Hüpolimnion

Hüpolimnion (eesti keeles nimetatud ka alusveeks) on kihistunud veekogu (enamasti sügava järve) kõige alumine veekiht.

Üldjuhul on see kiht kõige külmem suvel ja kõige soojem talvel, mil veekogu võib olla jääga kaetud.

Sügavates parasvöötme järvedes on hüpolimnioni veemassiiv aasta ringi 4 °C ringis. Väiksematel laiuskraadidel (soojema kliimaga aladel) võib hüpolimnioni veemassiivi temperatuur olla palju kõrgem kui 4 °C.

neljapäev, 29. veebruar 2024

Epilimnion


Epilimnion (ka pealisvesi) on kihistunud veekogu (enamasti järve) kõige ülemine veekiht (limnion), mis asetseb allpool oleva hüpolimnioni peal (kui eristatakse ka metalimnioni, siis viimase peal).

Epilimnion on hüpolimnioniga võrreldes soojem, enamasti kõrgema pH ja lahustunud O2 kontsentratsiooniga. Et epilimnion on veekogu kõige pealmine kiht, on see tugevasti mõjutatud tuulest ja sageli sellest tingitud turbulentsusest. Epilimnionis leiab aset lahustunud gaaside (O2 ja CO2) vahetus atmosfääriga.

kolmapäev, 28. veebruar 2024

Termokliin

Termokliin (ingl k thermocline, vene k слой скачка) ehk metalimnion on järsult muutuva temperatuuriga (1–3 °C ja rohkem 1 m kohta) õhuke hüppekiht suhteliselt sügavates kihistuvates veekogudesInversiooni nime all esineb termokliin ka atmosfääris.

Eri laiuskraadidele vastavad tüüpilised termokliinid. Madalamatel laiuskraadidel on termokliin paksem ning üleminek epilimnioni ja hüpolimnioni vahel sujuvam. Poolustele lähemal muutub termokliin õhemaks või kaob üldse

Termokliini eripära seisneb selles, et seal muutub temperatuur vertikaalsihis palju kiiremini kui sellest üleval- ja allpool asuvates veekihtides. Sellest võib mõelda kui nähtamatust tekist, mis eraldab teineteisest kaks veekihti: segunenud pinnakihi ehk epilimnioni ja rahuliku süvaveekihi ehk hüpolimnioni.

Termokliini sügavus ja paksus on veekoguti erinev ning sõltub mitmest tegurist: aastaajast, laiuskraadist, hoovustestloodetest ning tuule mõjul tekkinud vee turbulentsest liikumisest. Olenevalt veekogu tingimustest võib termokliin olla poolpüsiv, esinedes mõne mõjuteguri muutumise, näiteks pinnakihi ööpäevaringse soojenemise ja jahtumise tõttu vaid ajutiselt.

Kihistumine

Veekogu saab tavaliselt temperatuuriprofiili järgi jaotada kolmeks osaks. Ülemises tsoonis sügavusega 50–200 m on temperatuur sarnane pinnakihi temperatuuriga, selle all paiknevas tsoonis (vahemikus 200–1000 m) on temperatuuri järsk langemine ning kõige alumises tsoonis on temperatuuri muutumine väga aeglane. Madalatel laiuskraadidel on tüüpilisteks temperatuurideks 20 °C pinnal, 8 °C 500 m sügavusel, 5 °C 1000 m sügavuselja 2 °C 4000 m sügavusel. Keskmist, suure temperatuurigradiendiga tsooni, nimetatakse termokliiniks. Väikeste ebaregulaarsuste tõttu on selle täpset sügavust vaatluse käigus raske määratleda, seetõttu tehakse kindlaks hoopis nn termokliini tsoon ehk sügavusvahemik, kus temperatuurigradient on suurem kui sellest ülal- ja allpool.[2]

Termokliinid jagunevad ööpäevasteks (ingl k diurnal), sesoonseteks (seasonal), püsivateks (main või permanent) ning süvavee (abyssal) termokliinideks. Ööpäevane termokliin esineb pigem ookeani pealmises kihis, sesoonne umbes esimese 100 m piires, püsiv sügavusvahemikus 100–800 m ning süvaveetermokliin sügavamal.[3]

OokeanidRedigeeri

Enamik päikeselt tulevast soojusenergiast neeldub ookeani pinnakihi esimestes sentimeetrites ning pind soojeneb, öösel kiirgub soojusenergiat kosmosesse tagasi, mille tulemusena pinnakiht taas jahtub. Lainetus segab ookeani pinna lähedast kihti, kandes sellel neelduvat soojust ka veidi sügavamale. Olenedes lainete tugevusest ning hoovuste põhjustatud turbulentsi olemasolust ookeani pinnal, võib temperatuur kuni 100 meetri sügavuseni olla suhteliselt ühtlane. Segunenud kihist allpool oleva vee temperatuur jääb ööpäevaringse temperatuurikõikumise käigus pigem stabiilseks. Sügavamal muutub temperatuur järk-järgult madalamaks ning võib põhjale lähenedes langeda ligi nulli kraadini Celsiuse järgi, kuna ookeani soolane vesi keskmise soolsusega 3,5% jahtub alles −1,94 °C juures.[4]

Madalamatel laiuskraadidel, näiteks troopikas, on termokliin püsiv, keskmistel laiuskraadidel (parasvööde) aga püsiv, ent muutlik, varieerudes põhiliselt aastaaegade vahetumise tõttu. Talvisel ajal on pinnakiht jahedam ning termokliin vähem märgatav ja sügavamal, suvine termokliin on suurema temperatuurigradiendiga ja pinnale lähemal. Polaaraladel on veesammas pinnast põhjani suhteliselt ühtlaselt külm ning termokliin peaaegu märkamatu või puudub üldse. Lisaks termokliinile võib polaaralal esineda ka jahedama (kuni −1,6 °C) vee kiht (ingl k dicothermal layer) sellest soojemate ülemise ja alumise veekihi vahel (sügavusvahemik 50–100 m).[2]

Kuna helikiirus sõltub tihedusest, mis omakorda sõltub temperatuurist, saab termokliini kirjeldada negatiivse helikiiruse gradiendi järgi. Seetõttu on termokliin tähtis ka allveelaevanduses: hüppekiht peegeldab sonari või mõnda muud akustilist signaali.

Sukeldudes on termokliini olemasolu võimalik jälgida ka palja silmaga, näiteks olukordades, kus põhjast tulev külmem tõusuvesi tungib läbi termokliini soojemasse pinnakihti. Kuna murdumisnäitaja sõltub temperatuurist, näeb vesi selles olukorras välja kui reljeefne klaas, milletaolisi kasutatakse läbipaistvuse vähendamiseks näiteks vannitubade akendena. Taolisi läbipaistva keskkonna mittehomogeensusest tulenevaid nähtusi võib jälgida ka näiteks lennujaamade või kõrbete teedelt tõusva kuuma õhu tõttu.

Teised veekogudRedigeeri

Termokliinid on jälgitavad ka teistes veekogudes, näiteks järvedes. Suvel on hõredama sooja pinnaveekihi ja tihedama külma vee kihi vahel õhem termokliin, kuna järve pinnal ei ole sellist segunemist nagu toimub tuule ja lainetuse mõjul ookeanides ja meredes. Seetõttu on järvedes termokliin ka stabiilsem.

Suve lõpuks võib püsiva termokliini tagajärjena tekkida hapnikupuudus sellest allpool olevates veekihtides, kuna termokliin takistab hapniku liikumist pinnakihist allapoole ning hüpolimnionis elavad organismid tarvitavad olemasoleva hapniku ära. Talve lähenedes hakkab öine jahtumine päevase soojenemise üle domineerima ning pinnaveekihi temperatuur langeb. Kui pinnakihi temperatuur on langenud nii palju, et selle tihedus ületab alumiste veekihtide tihedust, pöörduvad kihid ümber, kuna pinnakiht vajub gravitatsiooni mõjul allapoole. Liikuvus, näiteks hoovused ja tuul, aitab protsessi kiirendada. Samasugune nähtus esineb ka arktilises ja antarktilises vees, asendades pinnaveekihi uue hapnikuvaesema, ent toitainerikkama süvaveekihiga. Selline pinnakihi toitainete järsk kasv võib kaasa tuua taimhõljumi ehk fütoplanktoni vohamise. Fütoplanktoni kui veekeskkonna toiduvõrgustike alglüli[1] kasv on aluseks ka teiste eluvormide populatsiooni kasvule.

Pinnakihi jahtudes võib selle temperatuur saavutada väärtuse, mille juures on võimalik jäätumine ning veekogu kattub jääkaanega. Kuna vee tihedus on suurim 4 °C juures, vajub see põhja ja surub hõredama vee, mis on külmumistemperatuuri lähedal, ülespoole, tekitades uue, talvise termokliini. Selline kihistumine kestab kuni kevadeni, kui jää on sulanud ja pinnavee temperatuur tõusnud vähemalt 4 soojakraadini. Kihid pöörduvad vanasse, talve-eelsesse olekusse.

Kinnistes või osalisel kinnistes veekogudes võib leiduda ka erineva olemusega termokliinisiseseid laineid. Ühel juhul on tegemist seisulainetega (ingl k erialatermin seiche), mille korral termokliin ühes ja samas asukohas mõõdetuna ajaliselt võngub. Teistsugune, ajas muutumatu laine võib tekkida reljeefsel ookeanipõhjal toimuvate voolude mõjul.

AtmosfäärRedigeeri

Ka Maa atmosfäär on temperatuuriliselt kihistunud, sisaldades kihte, milles temperatuur kõrguse tõustes langeb (negatiivne temperatuurigradient), õhukesi kihte ehk pause, milles vertikaalne temperatuurigradient on suhteliselt väike, ning kolmandaks kihte, kus temperatuur kasvab kõrguse kasvades. Maapinnale lähimas kihis ehk troposfääris on tüüpiliselt tegemist negatiivse temperatuurigradiendiga, kuna alumine atmosfäärikiht soojeneb põhiliselt Maa soojuskiirguse toimel[5], ent Maa öise jahtumise käigus võib olukord troposfääri alumises osas pöörduda ja asenduda hoopis positiivse temperatuurigradiendiga. Viimane nähtus – olukord, kus temperatuurigradient erineb atmosfäärikihile vastavast normaalsest gradiendist – kannab atmosfäärilise termokliinina nime inversioon või temperatuuriinversioon.[6] Inversioonikihi paksus võib olla vaid 100 m ning selle kohal jätkub troposfääri tavaline temperatuuriprofiil. Öise jahtumise mõjul tekkinud inversioonikihi stabiilsus on piiratud: normaalne temperatuurigradient taastub varsti pärast päikesetõusu, kuna maapind soojeneb ja soojendab õhku selle kohal. Soojem ja hõredam õhk tõuseb ning inversioon kaob. Taoline inversioonikiht saab tekkida ka talvel, kui päikesekiired langevad maapinna suhtes väikese nurga all ning äraantav soojusenergia ületab saadava soojusenergia hulga.

Inversiooninähtus võib kaasa tuua õhusaastatuse, kuna maapinnale lähem jahe õhk ei tõuse soojema ja hõredama kohale, mistõttu näiteks sudu hajumine on takistatud. Analoogiliselt termokliiniga käitub ka inversioonikiht eraldava kaanena ning võib takistada atmosfääris toimuvaid konvektsiooninähtusi. Kui see kaas mingil põhjusel kuskilt läbi hakkab laskma, võib tekkida äikesetorm. Külmemas kliimas võib inversiooninähtus kaasa tuua jäävihma, mis tekib tavaliselt olukorras, kus külm kiht on soojast kihist allpool (näiteks sooja frondi lähenemine).

teisipäev, 27. veebruar 2024

Epipelagiaal

Epipelagiaal on maailmamere kõige pealmine sügavusvöönd, pelagiaali osa. See vöönd on valgusküllane (eufootne vöönd) ning seetõttu saab seal toimuda fütoplanktoni fotosüntees.

Ookeanides algab see vöönd veepinnalt ja ulatub umbes 150–200 meetrini, sisemeredes harilikult 0–50(100) m.

Epipelagiaalile järgnev sügavusvöönd maailmameres on mesopelagiaal.

esmaspäev, 26. veebruar 2024

Supralitoraal

Supralitoraal ehk prits(m)ete vöönd on maailmamere bentaali ökoloogiline sügavusvöönd, litoraali üks kolmest põhivööndist (teised on eulitoraal ja sublitoraal).

Supralitoraal on vöönd, mis ulatub tõusuvee kõrgeimast piirist kuni pritsmete ülempiirini.

reede, 23. veebruar 2024

Mediaal

Mediaal on jõgede ökoloogiline sügavusvöönd, bentaali osa. See hõlmab jõe sügavamad piirkonnad, mis jäävad ripaalist allapoole. Mediaalis puudub põhjataimestik.

Mõnikord loetakse mediaaliks ka selle põhja kohal lasuvat veesambamassi.

neljapäev, 22. veebruar 2024

Ripaal

Ripaal on jõgede ökoloogiline sügavusvöönd, mis ulatub jõe kalda veepiirist kuni põhjataimestiku lõpuni. Angloameerika kirjanduses mõistetakse ripaalivööndi all jõe kalda piirkonda veepiirini (ehk hõlmamata jõe veelist osa).

Ripaalile järgnevat põhjataimestikuta sügavusvööndit nimetatakse mediaaliks.